# ( /الدوال الأسيه:

هي ألداله التي تحتوي على أس

مثال:

 $f(x) = 2^x$ 

٢/ألداله اللوغاريتميه:

R الدوال اللوغاريتميه معكوسة ألداله الاسيه مجالها  $R^+$  ومجالها المقابل

اللوغارتم**ر ب** log<sub>a</sub> y م الإساس

-الدوال اللوغاريتميه والدوال الاعتيادية:

العددان ٠ الع وهي من أكثر الأعداد استعمالا (حيث أن الـ e عدد غير نسبي)

\*اللوغاريتمات التي أساسها e لوغاريتمات طبيعيه يرمز لها بالرمز Inx

\*اللوغاريتمات التي أساسها ١٠ تسمى اعتيادية يرمز لهل بالرمز logx

# #(ذا كان الاساس ١٠ يكتب اللوغاريتم بدون أساس)

قوانين اللوغاريتمات: ( الأساس مشترك)

| المعادلة                                   | الحالة                                      |
|--------------------------------------------|---------------------------------------------|
| $\log_b x y = \log_b x + \log_b y$         | ١/ الضرب يتحول إلى جمع                      |
| $\log_b \frac{x}{y} = \log_b x - \log_b y$ | ٢/القسمة تتحول إلى طرح                      |
| $\log_b x^n = n \log_b x$                  | ٣/ إذا كان مرفوع للأس                       |
|                                            | فنضرب الأس في اللوغاريتم                    |
| $\log_b 1 = o$                             | ٤/ لو غاريتم ١ =صفر بغض النظر               |
|                                            | عن الاساس                                   |
| $\log_b b = 1$                             | ٥/إذا كان اللوغاريتم والأساس متساويان : = ١ |

#### ٣/ الدوال ألمثلثيه:

| Sin | جا  |
|-----|-----|
| cos | جتا |

| ألداله               |                                       |                       | قيمة الداله            |
|----------------------|---------------------------------------|-----------------------|------------------------|
| طا) tan              |                                       | $\frac{\sin}{\cos}$ = | <u>جـــا</u><br>جئـــا |
| ے sec (قا)           |                                       | $\frac{1}{\cos}$ =    | <u>1</u><br>جـتا       |
| (قتا) csc            |                                       | $\frac{1}{\sin}$ =    | <u>1</u><br>جنا        |
| cot (ظتا)            | *مقلوب الـ(ظا)*                       | cos<br>sin =          | <u>جنا</u><br>جا       |
| $\# sin^2 + cos^2 =$ | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | جنا <sup>2</sup> = ۱  | # جا <sup>2</sup> +    |

## ٤/ الدوال النسبية أو الكسريه:

- · هي الأعداد التي على شكل كسر ويشترط أن لا يكون المقام صفر أو يجعل المقام صفر
- المجال لهذه الدوال هو جميع الأعداد الحقيقيه ما عدا الأعداد التي تجعل المقام يساوي الصفر

#### مثال:

$$f(x) = \frac{x+7}{x+5}$$
  $\rightarrow$  (R-0) مجالها کل القیم ماعدا - (R-0) مجالها کل المجموعة)  $\rightarrow$  (R-0) مجالها  $\rightarrow$  (کل المجموعة)  $\rightarrow$  (R-0) مجالها  $\rightarrow$  (کل المجموعة)

# ٥/الدوال الصريحة والدوال الضمنية:

ألداله الضمنية: في الصورة 
$$f(y,x)=k$$
 حيث  $K$  قيمه ثابته  $f(y,x)=k$  لا يمكن فصلهم)

$$1/x^2 + y^2 = 10$$
  $1/(x-3)^2 + (y+5)^2 = 69$ 

#### ٦/ الدوال الزوجية والدوال الفردية:

- الدوال الزوجية:

f(-x) = f(x) في الدالة الـ (-) أي الدالة الـ (+) تساوي الدالة الـ (-) أي f(x) = f(x) مثال ۱: هل الدالة  $f(x) = x^2 + x$  زوجيه؟

$$f(+x) = x^{2} + x$$

$$= (x) (x) + x$$

$$= x^{2} + x$$

$$f(-x) = (-x)^{2} + (-x)$$

$$= (-x) (-x) + (-x)$$

$$= -x^{2} - x$$

 $f(-x) \neq f(+x)$  الدالة ليست زوجيه لأن :. الدالة

مثال ۲: هل  $f(x)=x^2$  دالة زوجية؟

من النظرة الأولى نقول نعم زوجيه لأن أي عدد نربعه يكون موجب  $(- \times -) = +$ 

f(-x) = f(+x) فستكون

- الدالة الفردية:

f(-x) = -f(x) نقول الدالة فرديه إذا

(أي أن x و ضرب الدالة في - متساويين)

مثال: هل الدالة  $f(x)=x^3+x$  فردية أو زوجية؟

$$-f(x) = -x^{3} - x$$

$$= (x) (x) (x) - x$$

$$= f(-x) = (-x)^{3} + (-x)$$

$$= (-x)(-x)(-x) + (-x)$$

$$= -x^{3} - x$$

f(-x) = -f(x) الدالة فردية لأن ::

\*تطبيقات اقتصادية:

### ١- دوال الطلب الخطية:

هناك علاقة عكسية بين كمية الطلب على سلعة معينة وسعرها بمعنى أنه كلما زاد سعر السلعة كلما p قل الطلب عليها. ونرمز لكمية الطلب على السلعة بالرمز  $Q_{D}$  بينما نرمز لسعر السلعة بالرمز  $Q_{D}$ 

 $Q_{\!\scriptscriptstyle D}=25-5P$  مثال:إذا كانت دالة الطلب على سلعة معينة:

دعواتكم/ اختكم دوحة غناء

فأوجد: أ. الكمية المطلوبة من هذه السلعة عندما P=3

 $Q_D = 18$  ب سعر الوحدة إذا كانت الكمية المطلوبة

P=0 أي أي P=0

د. أعلى سعر يمكن أن يدفعه أي شخص لهذه السلعة. (أي تكون السلعة نادرة فأعلى سعر ممكن تباع به)

الحل:

$$P = 3$$
 أ. عندما  $Q_D = 25 - 5P$ 
 $= 25 - 5 \times 3$ 
 $= 25 - 15$ 
 $= 10$ 
 $Q_D = 18$ 
 $\therefore P = 25 - 5P$ 
 $18 = 25 - 5 \times P$ 
 $5P = 25 - 18 = 7$ 
 $\therefore P = \frac{7}{5} = 1.4$ 
 $P = 0$ 
 $\Rightarrow T = 25 - 5 \times P$ 
 $\Rightarrow T = 25 - 5 \times P$ 

$$Q_D=0$$
د. على سعر يحدث عندما $Q_D=25-5P$  
$$0=25-5\times P$$
 
$$5P=25$$
 
$$\therefore P=5$$

### ٢- دالة العرض (الإنتاج) الخطية:

هناك علاقة طرديه بين كمية الإنتاج من سلعة معينة وسعرها بمعنى أنه كلما زاد سعر السلعة كلما زادت كمية الإنتاج. ونرمز لكمية العرض (الإنتاج) من سلعة ما بالرمز  $Q_{\rm S}$  بينما نرمز لسعر السلعة بالرمز P

مثال: إذا كانت 
$$Q_S = 3P - 2$$
 فأوجد:

$$P=5$$
 أ.  $Q_S$  إذا كانت

$$Q_{\rm S}=10$$
 عوراتكم/ اختكم دوجة غناء

ب. م إذا كانت

ج. اقل سعر يمكن أن تباع به وحدة السلعة لتفي حاجة الإنتاج (أي لكي يمكن الإنتاج).

الحل:

$$P = 5$$
 أ.  $2 = 3P - 2$  أ.  $2 = 3 \times 5 - 2$   $= 15 - 2$   $= 13$   $2 = 10$  أ.  $2 = 3P - 2$   $2 = 4$ 

 $Q_{\rm S}=0$  ج. أقل سعر يمكن أن تباع به وحدة السلعة لتفي حاجة الإنتاج (أي لكي يمكن الإنتاج). أي عندما

$$Q_s = 3P - 2$$

$$0 = 3P - 2$$

$$-3P = -2 - 0 = -2$$

$$\therefore P = \frac{2}{3}$$

٣- التوازن في السوق بين دالتي العرض والطلب الخطيتين:

يكون التوازن إذا كانت الكمية المعروضة = الكمية المطلوبة

مثال:

.  $Q_{D}=2-P$  إذا علمت أن دالة الطلب على سلعة معينة هي

 $Q_{\scriptscriptstyle S}=P\!-\!1$  وان دالة العرض لنفس السلعة هي

أوجد سعر التوازن والكمية التي يحدث عندها التوازن

$$Q_S = Q_D$$
 الحل:  
 $P-1=2-P$   
 $P+P=2+1$   
 $2P=3$   
 $\therefore P=\frac{3}{2}$ 

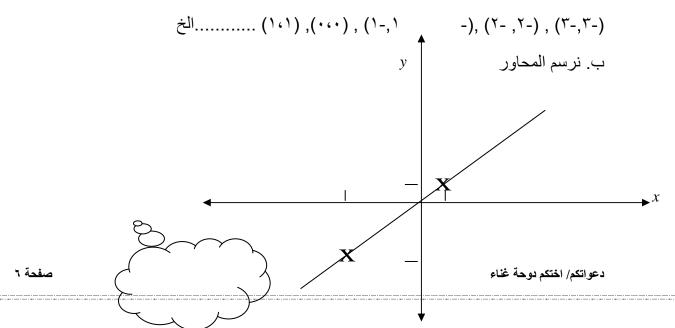
$$Q_S = \frac{3}{2} - 1 = \frac{3-2}{2} = \frac{1}{2}$$
 ثم نعوض في احد الدالتين

### رسم الدوال:

# الخطوات:

- أ. نقوم بإنشاء جدول بقيم x وقيم y المناظرة لها للحصول على الأزواج المرتبة.
  - ب. نرسم المحاور الديكارتية ونقوم بتدريج كل منهما تدريجاً مناسباً .
- ت. نقوم بتعيين هذه النقاط على المستوى الديكارتي ثم توصيل هذه النقاط بصورة ملساء للحصول على منحنى الدالة.

## الصيغ قياسية لبعض الدوال:


١. دالة خط مستقيم

y = f(x) = xمثال: ارسم الدالة

الحل: أ. الخطوة الأولى إنشاء جدول بقيم x وy:

| ح قيم X نحن من يفرضها دائما | Х      | -٣ | -7 | -1 | • | ١ | ۲ | ٣ |
|-----------------------------|--------|----|----|----|---|---|---|---|
| y في معادلة X في معادلة     | y= (x) | -٣ | -7 | -1 | • | ١ | ۲ | ٣ |

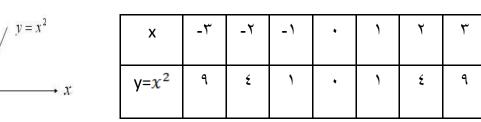
y تعين النقاط على شكل أزواج مرتبه يكون نقطه من x مع ألنقطه المقابلة لها من

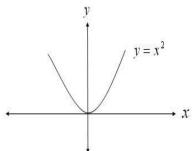


### ٢. الدالة التربيعية:

$$y = f(x) = x^2$$
 مثال: ارسم الدالة

الحل:


 $y=\chi^2$  وهي Y في معادلة Y وهي  $Y=\chi^2$ 


$$f(-3)^2 = -x - x = 0 \leftrightarrow x - x = 0$$

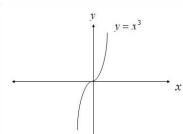
$$f(-2)^2 = -7 \times -7 = 5 \leftrightarrow 7 - 2ic$$

$$f(2)^2 = Y \times Y = \xi \leftrightarrow Y \rightarrow \Sigma$$

## وهكذا بقية العناصر






## ٣. الدالة التكعيبية:

$$y = f(x) = x^3$$
 مثال: ارسم الدالة

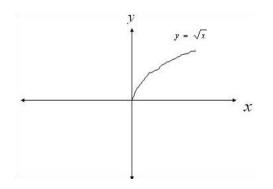
الحل:

| х | -۲ | -1 | • | ١ | ۲ |
|---|----|----|---|---|---|
|   |    |    |   |   |   |

| ((المعرفة قيم ٧ نعوض ه | v- x3 | -٨   | -1  |   | 1 | ٨   |
|------------------------|-------|------|-----|---|---|-----|
| فرضناها في             | y – X | -, , | _ , | · | , | , , |



مباشرة قيم x التي

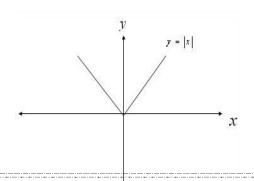

معادلة γ [بتكعيب قيم X] نفس الطريقة السابقة ثم نحدد النقاط على المحاور ونوصل النقاط)))

# ٤. دالة الجذر التربيعي:

عندما نفرض قيم x في الدالة الجذرية لا نفرض قيم سالبه لأن الأعداد ألسالبه تحت الجذر تخرج أعداد غير حقيقيه

$$y = f(x) = \sqrt{x}$$
 مثال: ارسم الدالة

الحل:




| Х             | ٠ | ١ | ۲   | ٣   | ٤ |
|---------------|---|---|-----|-----|---|
| y= √ <i>x</i> | • | ١ | ١,٤ | ١,٧ | ۲ |

## ٥. دالة القيمة المطلقة:

مثال: ارسم الدالة y = f(x) = |x| (دااائما إذا شفنا قيمة مطلقة أو دالة مطلقه المهم أنها مطلقة مباشره نعرف أن أي عدد يخرج منها راح يكون موجب بأي شكل كان)

الحل:



| Х     | -٣ | -7 | -1 | • | ١ | ۲ | ٣ |
|-------|----|----|----|---|---|---|---|
| y=  x | ٢  | ۲  | •  | • | • | ۲ | ٣ |

دعواتكم/ اختكم دوحة غناء

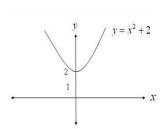
### \*نظرة سريعة على الصيغ القياسية لدوال وأشكالها: (لا ننسى هذا الجدول)

| شكلها               | معادلتها          | اسم الدالة                              |
|---------------------|-------------------|-----------------------------------------|
| عط مستقیم           | y= (x)            | <ol> <li>دالة خط مستقيم</li> </ol>      |
| تشبه حرف U تشبه حرف | y=x <sup>2</sup>  | ٢. الدالة <u>التربيعية</u>              |
| , y=3 <sup>3</sup>  | y= x <sup>3</sup> | ٣. الدالة التكعيبية                     |
| ي نصف قوس           | y= √ <i>x</i>     | <ol> <li>دالة الجذر التربيعي</li> </ol> |
| شكل زاويه           | y=  x             | <ul> <li>دالة القيمة المطلقه</li> </ul> |

# ملاحظات على رسم الدوال:(الازاحه)

### ١. الإزاحة إلى الأعلى:

يمكن الحصول على منحنى الدالة y=f(x)+c بإزاحة منحنى y=f(x) بمقدار y=f(x)+c وحدة إلى أعلى ( y على محور y ) .


 $y = x^2 + 2$  مثال: ارسم منحنى الدالة

الحل:

(نشيل الوحدات المضافة حتى تتضح لنا الصيغة القياسية) المستخرج ألصيغه القياسية من المعادلة ((نشيل الوحدات المضافة حتى تتضح لنا الصيغة القياسية) هذي هذي الدالة التربيعيه وشكلها مثل  $y = x^2$ 

۲/ نرسمها

٣/ بعد الرسم نحركها بعدد الوحدات المطلوبة



## ٢. الإزاحة إلى الأسفل:

يمكن الحصول على منحنى y=f(x) بإزاحة منحنى و y=f(x) بازاحة منحنى و حدة إلى أسفل و على محور y=f(x) .

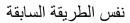

 $y = x^2 - 3$ مثال: ارسم الدالة

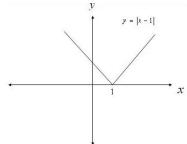
الحل:

إذا استبعدنا الوحدات المضافه تبقى المعادلة  $y=x^3$  الصيغة القياسية لـ الدالة التربيعه ولكن هنا بالطرح

والمطلوب ٣ وحدات

إذا إلى أسفل





## ٣. الإزاحة إلى اليمين:

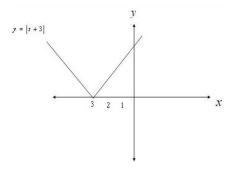
يمكن الحصول على منحنى y = f(x) بإزاحة منحنى y = f(x) بمقدار y = f(x-c) وحدة إلى اليمين (على محور x ) .

y = |x-1| مثال: ارسم الدالة

الحل: نحصل على منحنى هذه الدالة بإزاحة منحنى الدالة y = |x| وحدة واحدة إلى اليمين كما يلى:






## ٤. الإزاحة إلى اليسار:

يمكن الحصول على منحنى y=f(x+c) بإزاحة منحنى و بيان بي y=f(x+c) بيسار و على محور x . ( x محور

y = |x+3| مثال: ارسم الدالة ادعواتكم اختكم دوحة غناء

الحل:

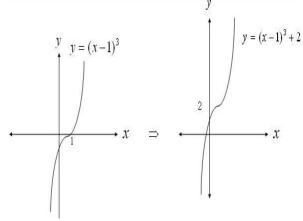
نحصل على الماحظي هذه الدالة بإزاحة منحنى الدالة ثلاث وحدات إلى اليسار كما يلي:



مثال على الإزاحة المزدوجة:

$$y = (x-1)^3 + 2$$
 ارسم الدالة

الحل:


او لاایجاد الصیغة القیاسیه نستبعد الوحدات لـ الدالة (لا ننسی أن لفك القوس لا بد أن ندخل التكعیب) لذالك نقول الصیغة القیاسیة لدالة هی  $x^3$  دالة تكعیبیه

هنا نقوم بإزاحتين لدالة التكعيبيه

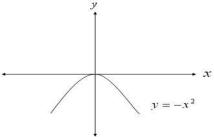
الأولى  $y=(x-1)^3$  [هذي نفس شكل الازاحه الى اليمين]

والثانية y=x+۲ [نفس شكل الازاحه إلى أعلى]

نزيحه بمقدار وحده إلى اليمين ثم وحدتين إلى الأعلى



٥ الانعكاس على محور x:


دعواتكم/ اختكم دوحة غناء

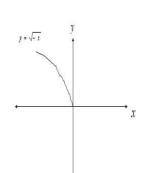
. x يمكن الحصول على منحنى y = f(x) بانعكاس منحنى y = f(x) على محور

 $y = -x^2$  مثال: ار سم الدالة

الحل: نحصل على منحنى هذه الدالة بانعكاس منحنى الدالة  $y=x^2$  على محور x كما يلى:

من شكل الدالة هي تربيعيه وقال معكوس على x (إذا تذكرون في المرحلة الابتدائية كنا نسويها بورق الشفاف وكنا نسمى X محور تناظر )




#### ٦. الانعكاس على محور ٧:

. y = f(x) محور y = f(x) بانعکاس منحنی y = f(-x) محور

 $y = \sqrt{-x}$  مثال: ارسم الدالة

الحل:

نحصل على منحنى هذه الدالة بانعكاس منحنى الدالة  $y = \sqrt{x}$  على محور  $y = \sqrt{x}$ 



#### \*\*\*\*\* الزيده من الازاحات هناء \*\*\*\*\*\*

إذا قلنا ازاحه إلى أعلى أو أسفل : الازاحه على محور الص (٧)

وإذا قلنا إلى اليمين أو اليسار : الازاحه على محور الس (x)

كيف نميز جهة الإزاحة؟ بشكل المعادلة

| مثال          | المعادلة     | نوع الازاحه        |
|---------------|--------------|--------------------|
| $y = x^2 + 2$ | y = f(x) + c | الإزاحة إلى الأعلى |
| $y = x^2 - 3$ | y = f(x) - c | الإزاحة إلى الأسفل |
| y =  x - 1    | y = f(x - c) | الإزاحة إلى اليمين |
| y =  x+3      | y = f(x+c)   | الإزاحة إلى اليسار |

| الـ (-) مضروب في ألداله<br>y = -x <sup>2</sup> | y = -f(x) | الانعكاس على محور x |
|------------------------------------------------|-----------|---------------------|
| الـ(-)مضروب في قيمة الـ x فقط $y = \sqrt{-x}$  | y = f(-x) | الانعكاس على محور ٧ |

\*\*\*الدكتور قال صيغة السؤال في الاختبار رح تكون بهذي الطريقة \*\*

مثال ١:

نحصل على منحنى هذه الدالة بإزاحة منحنى الدالة  $y=x^2$  وحدتين إلى أعلى اختار منحنى الدالة الصحيح ((((ثم يعطي خيارات))))

- الحل :

 $y = x^2$  الصيغة القياسية المعطيات/

إلى أعلى يعني + (؟؟؟ لأننا حافظين المعادلة للإزاحة إلى الأعلى y=f(x)+c )

و وحدتین یعنی ۲

y=f(x)+Y المعادلة رح تكون x

\*مثال ۲:

نحصل على منحنى هذه الدالة بانعكاس منحنى الدالة  $y = \sqrt{6}$  على محور  $y = \sqrt{6}$  أوجد معادلة منحنى ألداله?

-الحل

المعطبات/

 $y = \sqrt{6}$   $\longleftrightarrow$  الصيغة القياسية لدالة

هو معكوس على y ∴ معادلة المعكوس على محور y هي (y= f(-x)

 $y=\sqrt{-6} \leftarrow \text{insell}$ :

مجال الدالة:

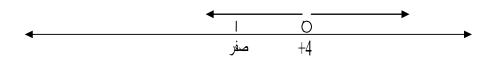
تعريف مجال الدالة : هو مجموعة الأعداد الحقيقة التي تكون عندها قاعدة الدالة معرفة. وكثيرات الحدود مجالها R

كثيرات الحدود مجالها دائما R [الصيغة العامة لكثيرة الحدود (أ m + $\mu$  m – m) المهم أنها m و m و ممكن ج ويكون بينهم إشارات وممكن يكون الـ m أو الـ m عليهم أm] m m (m m ) m صفحة m صفحة m معواتكم/ اختكم دوحة غناء

و الدوال التي ليست كثيرة حدود فمجالها R إلا إذا كان هناك قيود والقيود هي:

أ- في الدالة النسبيه لا يكون المقسوم عليه صفراً أو يحصل الصفر.

$$f(x) = \frac{x+7}{x+5}$$
 را (R-0) مجالها R ماعدا


ب- أن لا يكون هناك مقدار سالب تحت جذر دليله زوجي.

سالب  $\chi$  يجب أن تكون قيمة  $\chi$  موجبه أما إذا كان الدليل فردي  $\chi$  لا بأس أن يكون  $\chi$  سالب  $\chi$  ان لا يكون مقدار اخذ لو غاريتمه مقداراً سالباً.

 $\log x \ge 0$ 

د- النقاط الفاصلة للدوال المعرفة وفق أكثر من قاعدة.

ما هي النقطة الفاصلة ؟؟ (هي النقطة التي تقع بين مجالين [إذا كانت إشارة < و > لا تحتوي على يساوي] : النقطة تعتبر فاصلة ) مثال: 3 < x و 3 > x نمثلها على خط الأعداد



یکون مجال الدالهٔ  $\infty$  و  $+\infty$  ما عادی +3 [R - (+3)] (موجود فی در س المتباینات)

ه - الشروط الإضافية الموضوعة على قاعدة الدالة.

بمعنى أن يكون مستثنى من القيم قيم معينه (((( يكتب الدالة معرفة على قيم x ما عادى كذا وكذا مثلا  $(0 \ 0 \ 1)$ )))

أمثله •

أوجد مجال الدوال التالية:

1) 
$$f(x) = 3x^2 + 5x - 7$$

الحل/

٠ يوجد قيم لـ x وبينها + و - ∴ الدالة كثيرة حدود مباااااشرة نكتب مجالها R

2) 
$$f(x) = \sqrt{x+4}$$
 دعواتكم/ اختكم دوحة غناء

الحل/

 ١/ الدالة جذريه ودليله ٢ ( إذا كان الدليل ٢ ما ينكتب فوق الجذر)من شروط مجال الدالة الجذرية أن نستبعد كل القيم السالبة)

 $x+t \ge 0$  (-) ان نكتبها على شكل متباينه ونستبعد القيم الـ (-)

 $[-\xi,\infty)$  هذه المتباينة  $x\geq -4$  شجالها ( $\infty$ ,  $\pi$ ) مجالها

3) 
$$f(x) = \sqrt[3]{x-2}$$

الحل /

الدليل فردي .: مبااشره نكتب الدليل R

4) 
$$f(x) = \sqrt{x^2 + 4}$$

۱/ الدليل ۲ زوجي و x مربع : جميع القيم ستصبح + ولن يكون هناك عدد - تحت الجذر

ن مجال الدالة R

5) 
$$f(x) = \frac{3x+5}{x-2}$$

الحل:

الدالة نسبيه :: نستثني كل ما سيجعل المقام = صفر

x-7= • ⇔ x=7

: مجال الدالة ٢ - R

6) 
$$f(x) = \begin{cases} 3x+2, & x > 1 \\ 7x-6, & x < 1 \end{cases}$$

الحل/ المتباينه إذا لم يوجد إشارة = مع > و < فإن العدد مستثنى من المجموعة

7) 
$$f(x) = \begin{cases} x+7, & 1 < x \le 4 \\ 3x-5, & 4 < x \le 8 \end{cases}$$

الحل/

باختصار نأخذ العدد الأول ١ لاحظوا الإشارة ما فيها = ∴ الفترة مفتوحه

ثم نأخذ العدد الأخير والحظوا الإشارة فيها = : الفترة مغلقه

: مجال الدالة [۱،۸]

$$8) \quad f(x) = \log(2x+4)$$

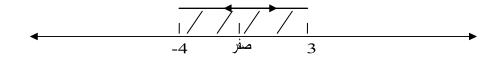
اللوغاريتم شرطه أن لا يكون سالب

- نحول إلى متباينة ونحلها

ن ٢x+٤>٠ (نضع إشارة اكبر من الصفر لأنها لابد تكون القيم موجبه)

$$x = 1$$
 La value  $x = 1$  La value  $x = 1$ 

x > -2


∴ مجال الدالة هو ( ∞, ۲-)

9) 
$$f(x) = \sqrt{x+4} + \sqrt{3-x}$$

جذرا مختلفا .. نحدد مجال كل جذر والمجال يكون الفترة المشتركة بين المجالين لأن هذه الفترة هي التي تحقق الشرط بأن ما تحت الجذر لا يكون —

دعواتكم/ اختكم دوحة غناء





#### : مجال الدالة من [٤٠٣]

#### \*\*\* ملاحظه\*\*\*

بعد حل المتباينة يبقى تحديد المجال أكيد رح يكون العدد الناتج

ولكن كيف نعرف هل هو مغلق أو مفتوح؟

إشارة اكبر واصغر إذا كان فيها = يعني مغلقه [ ] إذا ما فيها (

وكيف نعرف هل +∞ او ـ∞ ؟

(باختصار إذا كان x اكبر ∴ +∞ وإذا كان اصغر-∞)

وممكن نمثلها على خط الأعداد لمعرفة هل هي – أو +

كيف نعرف الإشارة اكبر أو اصغر؟

 $X \geq -4$  الحبه المفتوحة من الإشارة هي اكبر مثال  $x \geq 1$  الحبه المفتوحة من الإشارة الكبر مثال

ما أصبت فمن الله وحده وما أخطئت فمن نفسي والشيطان

الاشتقاق

قواعد مهمة

١ / العدد الصحيح يحول الى = صفر

۲/ والمتغیر الـ X یحول الی= ۱

٣ /اذاكان للـ X اس >> نقوم بانزال الاس ويكون بجوار الـ X ثم تطرح من قميه الاوس واحد ونضعه اس جديد للـ X

 $2x^{2-1} = x^2$  بهذا الشكل

مثال:

اوجد ٥ =y

الحل حسب القاعده الاولى >> العدد الصحيح يحول الى ٠

$$\frac{\mathrm{dy}}{\mathrm{dx}} = 0$$

مثال

اوجد

 $Y = 3x^4$ 

الحل حسب القاعده ٣

$$\frac{\mathrm{dy}}{\mathrm{dx}} = 4x^{4-1}$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = 4\mathrm{x}^3$$

مثال شامل

اوجد

$$Y = 0x^2 + 4x + 7$$

الحل

$$\frac{\mathrm{dy}}{\mathrm{dx}} = 5(2)x^{2-1} + 4(1) + 0$$

لاحظ اننا قمنا بانزال الاس بجوار الـ X ثم طرحنا واحد من الاس

تنبیه: اذا کان الاس ۲ وطرحنا منه ۱ سیکون الناتج ۱ اذا لایکتب X اس واحد یکتب X بدون اس لان أي عدد او مجهول اسه واحد

لاحظ اننا حولنا الـ X الذي كان مع الـ ٤ الى ١

لاحظ اننا حولنا العدد الصحيح الى صفر

ثم نقوم بضر العدد الذي بين الاقواس بالعدد الذي قبله

ه ضرب ۲ = ۱۰

٤ ضر ب ١ = واحد

ويكون هذا هو الحل النهائي

$$\frac{\mathrm{dy}}{\mathrm{dx}} = 10x + 4$$