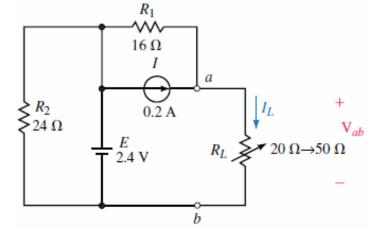
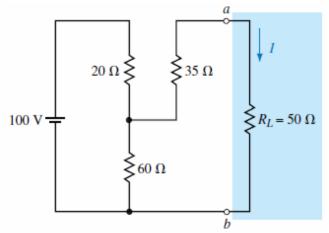
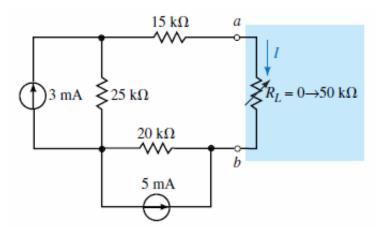

Network Theorems (part2)

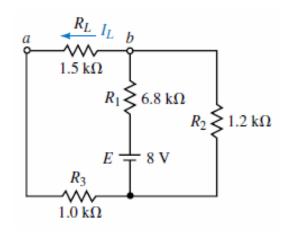

Thévenin's Theorem

9) Find the Thévenin equivalent external to RL in circuit of Figure 9-83.. Use the

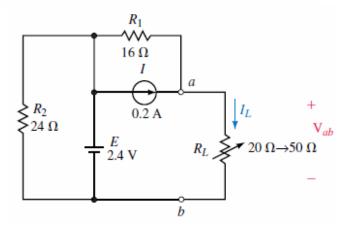

equivalent circuit to find Vab.


- 11) Refer to the circuit of Figure 9–85:
- a. Find the Thévenin equivalent circuit external to RL.
- b. Use the equivalent circuit to determine Vab when RL 20 Ω and when RL 50 Ω .

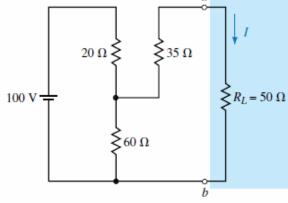
- 13) Refer to the circuit of Figure 9–87:
- a. Find the Thévenin equivalent circuit external to the indicated terminals.
- b. Use the Thévenin equivalent circuit to determine the current through the indicated branch.


- 17) Refer to the circuit of Figure 9–91:
- a. Find the Thévenin equivalent circuit external to RL.
- b. Use the Thévenin equivalent circuit to find the current *I when RL 0*, $10 \text{ k}\Omega$, and $50\Omega \text{ k}$.

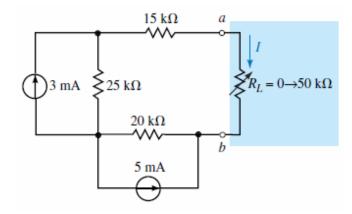
17. a. $R_{\text{Th}} = 60 \text{ k}\Omega$ $E_{\text{Th}} = 25 \text{ V}$ b. $R_L = 0$: I = -0.417 mA $R_L = 10 \text{ k}\Omega$: I = -0.357 mA $R_L = 50 \text{ k}\Omega$: I = -0.227 mA


Norton's Theorem

27) Find the Norton equivalent circuit external to RL in the circuit of the Figure . Use the equivalent circuit to find IL for the circuit.



29. Refer to the circuit of Figure 9-85:


- a. Find the Norton equivalent circuit external to R_L .
- b. Use the equivalent circuit to determine I_L when $R_L=20~\Omega$ and when $R_L=50~\Omega$.

- a. Find the Norton equivalent circuit external to the indicated terminals of Figure 9–87.
 - b. Convert the Thévenin equivalent circuit of Problem 13 to its Norton equivalent.

33. Repeat Problem 31 for the circuit of Figure 9-91.

33. a. $I_N = 0.417 \text{ mA}$, $R_N = 60 \text{ k}\Omega$ b. $I_N = 0.417 \text{ mA}$, $R_N = 60 \text{ k}\Omega$