الفصل الثالث عشر

اقتصاديات مصادر الطاقة المتجددة

1-13 الطاقة الشمسية الحرارية

- طريقة إعادة المبالغ المصروفة _ السخان الشمسي
- طريقة أعادة المبالغ المصروفة _ منظومات التدفئة
 - طريقة دورة عمر السخان _ منظومات التدفئة
- اقتصاديات الطاقة الشمسية الحرارية في توليد الكهرباء

2-13 الخلايا الشمسية الكهروضوئية

- 3-13 طاقة الرياح
- 4-13 الكتلة الحيوية
- 5-13 الطاقة المائية
- 6-13 طاقة المد والجزر
- 7-13 طاقة الأمواج وطاقة حرارة المحيطات
 - 8-13 طاقة الحرارة الجوفية
- 9-13 مقارنة اقتصادية لمختلف مصادر الطاقة في إنتاج الطاقة الكهربائية

1-13 الطاقة الشمسية الحرارية

1-1-13 مقدمـــة

يعد استغلال الطاقة الشمسية في المجالات الحرارية من اقدم تطبيقات مصادر الطاقة المتجددة وذلك لسهولة وبساطة الاستغلال المباشر لحرارة الشمس في عدد من التطبيقات التي قد تحتاج إلى كميات كبيرة من الطاقة الكهربائية كتسخين المياه وتدفئة المبانى وتدفئة البيوت الزراعية وتجفيف المحاصيل الزراعية.

إن تقنية التسخين بالطاقة الشمسية هي الأكثر استخدماً في مناطق عديدة من العالم وخاصة في منطقة حوض البحر الابيض المتوسط وفي بعض الدول العربية كالاردن ومصر وسوريا وفلسطين ويزداد استخدامها يوماً بعد يوم في المناطق العربية الأخرى.

إذا كان استخدام منظومات التدفئة وتسخين المياه في منطقة ما سيوفر مبالغ للمستهلك فأن النظام سيكون اقتصادي ، وهنالك عدة طرق تستخدم لمعرفة جدوى استخدام هذه المنظومات وهي:

2-1-13 طريقة إعادة المبالغ المصروفة

عند التفكير باستخدام الطاقة الشمسية في تسخين المياه فأن الطريقة العملية الممكن الختيار ها لمعرفة الجدوى الاقتصادية هي مقارنة المنظومة مع منظومة تعمل بالوقود التقليدي (سخان كهربائي، سخان غازي، سخان نفطي). وعلى الرغم من حصولنا على الطاقة الشمسية بدون كلفة إلا إن كلفة منظوماتها التي تقوم باستقبال الإشعاع الشمسي وتحويله إلى طاقة مفيدة تكون عالية أحياناً.

وأحد الأمثلة هو استخدام السخان الشمسي ، ولنفرض أن حاجة أسرة مكونة من اربعة اشخاص هي 200 لتر يومياً من الماء (50 لتر يومياً للشخص الواحد) وبدرجة ٥٥ درجة مئوية. وبما أن فترة الحاجة إلى الماء الساخن تتراوح ما بين الفترة سبتمبر ولغاية أبريل (8 اشهر) فأن كمية الحرارة اللازمة تكون:

 $m~C_{\rho}~\Delta T~=Q$ کمیة الحرارة المطلوبة بالکیلو جول (KJ)

$$(Kg)$$
 ممية الماء المراد تسخينه بالكيلو جرام $= m$

$$\left(rac{\mathrm{KJ}}{\mathrm{Kg.C_0}}
ight)$$
 الحرارة النوعية $=\mathrm{C_p}$

الفرق بين درجات الحرارة للماء المطلوب تسخينه ΔT

$$200 \underline{\text{Kg x}} \text{ 4. } 186 \underline{\text{KJ x}} \text{ (50-20)} \text{C}^{\circ} = \text{Q}$$

day $\underline{\text{Kg.C}}^{\circ}$

= 25116 كيلو جول/يوم

وعليه فأن مجموع كمية الحرارة اللازمة لفترة الشتاء تكون:

$$25116 \left(\frac{\text{KJ}}{\text{Day}} \right) X8X \left(\frac{30 \text{day}}{\text{Month}} \right) = ($$
المجموع) Q

51,627,840 KJ =

هنالك ثلاثة حالات يمكن فيها توفير ماء ساخن من مصادر الطاقة التقليدية وهي استخدام السخان الكهربائي والسخان الغازي والسخان النفطي .

أ - استخدام السخان الكهربائي

بما أن كفاءة السخان الكهربائي تعادل تقريباً %100 لأن الطاقة الكهربائية في هذه الحالة تتحول جميعها إلى طاقة حرارية .

$$51627840(\mathrm{KJ})\mathrm{X}\left(\frac{1}{3600}\right)\left(\frac{\mathrm{hr}}{\mathrm{sec}}\right)$$
 = السنوية اللازمة اللازمة = $14341~\mathrm{Kw-hr}$

واذا افترضنا بان سعر الكيلووات - ساعة هو 8 سنت أمريكي (0.08) فان الكلفة الكلية لمصاريف الكهرباء لسنة كاملة ستكون:

$$0.08 \times 14341 = 0.08 \times 14341$$
 الكلفة الكلية = 1147 دو لأر سنوياً

وإذا افترضنا بان سعر سخان شمسي يستطيع توفير كمية الحرارة المطلوبة هو 1500\$، وبما أن طريقة إعادة المبالغ المصروفة (Pay-back) تتص على أن عدد السنين اللازمة لدفع مصاريف تسخين المياه هي السعر الكلي للمنظومة مقسوماً على كمية

الإدخار. وبما أن السماء لا تكون صافية في معظم الاوقات فان السخان الشمسي يستطيع فقط أن يوفر ما مقداره %80 من الحرارة اللازمة وعليه فان زمن اعادة المبلغ سيكون:

$$\frac{1500}{1147X0.8}$$
 = الزمن 1.7 = 1.7 سنه 1.7

و هو الزمن اللازم لتسديد قيمة السخان الشمسي المنصوب بدل سخان كهربائي يعمل بوحدة كهرباء يبلغ سعرها \$0.00 وهذا المبلغ لا يتضمن ارباح الفائدة على المبلغ اذا تم الأقتراض من البنك و لا يتضمن ايضاً مبالغ التشغيل والصيانة والضرائب والاندثار.

ب- استخدام السخان الغازي

عند المقارنة مع السخان الغازي فان كمية الطاقة الكلية السنوية البالغة 51627840 $\rm KJ$ $\rm Y$ \rm

$$\frac{51627840(KJ)}{50X10^6 \left(\frac{J}{Kg}\right)}X0.65}$$
 $= \frac{1588.0}{1588.6} \times 0.1 = 0.588.6 \times 0.1 = 0.588.85 = 0.588.85$
 $= \frac{1500}{158.8X0.8} = 0.588.85$
 $= \frac{1500}{158.8X0.8} = 0.588.85$
 $= \frac{1500}{158.8X0.8} = 0.588.85$
 $= \frac{1500}{158.8X0.8} = 0.5888.93$
 $= \frac{1500}{158.8X0.8} = 0.5888$

ج _ استخدام السخان النفطى

كمية الطاقة السنوية هي KJ 51627840 ولكن الذي يتغير هو كلفتها ، فإذا افترضنا بان كلفة الكيلوغرام من الكيروسين حالياً هي \$0.08 وإن المحتوى الحراري لنفط التدفئة

المنزلي هو $\left(\frac{J}{Kg}\right)^{45}$ وان كفاءة السخان النفطي لا تتجاوز 45×10^6 فعليه يكون التالي :

$$\frac{51627840(\mathrm{KJ})}{45\mathrm{X}10^6 \left(\frac{\mathrm{J}}{\mathrm{Kg}}\right)}\mathrm{X}0.6}$$
 = مية نفط التدفئة اللازم = 1912.14 عيلوجرام الكلفة السنوية للنفط = 1912.14×0.08 = 152.97 دو لار وعليه فان الزمن اللازم = $\frac{1500}{152.97\mathrm{X}0.8}$ = 12.25 = 12.25 = 12.25 = 12.25 = 12.25 = 12.25

13-1-3 طريقة إعادة المبالغ المصروفة - منظومات التدفئة

تختلف الاحمال الحرارية للأبنية باختلاف موقعها من الوطن العربي وبأختلاف اساليب البناء المتبعة وتحديداً العوازل الحرارية والأساليب السلبية في تقليل حمل التدفئة، ولنفرض بأن أحد أرباب المنازل يدفع سنوياً ما يعادل 800\$ لتغطية مصاريف التدفئة، وإن كلفة شراء ونصب منظومة شمسية تقوم بالتدفئة هو ما يعادل 15000\$ وإن المنظومة الشمسية تستطيع ان تغطي 80% من الحمل على طول مدار السنة ، وعليه فإن المدة اللازمة لاستعادة المبالغ ستكون:

$$\frac{15000}{800 \times 0.8} = 15000$$
 المدة اللازمة لاستعادة المبالغ ستكون $= 23.43$

وقد تبدو هذه المدة طويلة ولهذا السبب فان استخدام الطاقة الشمسية في منظومات التدفئة في الوقت الحاضر في الوطن العربي محدود لان فترة استعادة المبالغ طويلة.

13-1-4 طريقة دورة عمر السخان

في طريقة اعادة المبالغ المصروفة البسيطة يعتبر معدل اعادة الارباح والتضخم معدوماً (يساوي صفر). ومعظم الاقتصاديين لا يستخدمون هذه الطريقة لأن نتائجها ليست دقيقة بشكل كافى ، وإن طريقة تقدير "كلفة طول فترة العمل" هي وسيلة أكثر دقة لأنها

تأخذ بنظر الأعتبار قيمة الفائدة السنوية والتضخم. فمثلاً إذا كانت كلفة تدفئة بيت كبير هي 1000\$ دو لار في السنة الأولى. فمستقبلاً نفترض أن أسعار الوقود ستزداد بنسبة 1000 سنوياً للسنوات الخمس القادمة ، وعليه فإن السعر:

في السنة الثانية سيكون: (1.0+1) 1000 = 1100 دو لار وفي السنة الثالثة سيكون: (1.0+1)(1.0+1) 1000 = 1210\$ دو لار وفي السنة الرابعة سيكون: (1.0+1)(1.0+1) (1.0+1) 1000 = 1331\$ دو لار

وقعي الشنة الرابعة سيكون: (1.0+1)(1.0+1) (1.0+1) 1000 = 1331 دو لار وفي السنة الخامسة سيكون: (1.0+1)(1.0+1) (1.0+1) (1+0.1) 1000 = 1464\$ دو لار

وعليه فإن سعر الوقود للسنوات الخمس القادمة سيكون مساوياً له:

وهذا ما يسمى بالكمية المساوية بالوقت الحاضر أو القيمة الحالية.

ولدفع قوائم التدفئة للسنوات الخمس القادمة يتوجب فرض %10 كمقدار للزيادة السنوية لأسعار الوقود .

مثال:

إذا كانت كلفة تدفئة منزل هي 1000\$ لهذه السنة ، فما هي الكلفة الكلية للتدفئة خلال السنوات الخمس القادمة إذا كانت الزيادة السنوية بأسعار الوقود هي 10% ؟

المعادلة الرياضية اللازمة لإنجاز الحسابات التالية هي:

$$\frac{A}{i} \left[(1+i)^n - 1 \right] = \rho$$

ρ = المبلغ الكلى بقيمته الحالية

A = 1المصروفات السنوية

i = معدل التضخم

n = عدد السنبن

فإذا كانت قيمة الوقود الحالية (A) هي 1000\$ ومعدل الزيادة السنوية (التضخم) هي 10%، فإن المبلغ المدفوع (p) خلال السنوات الخمس القادمة سيكون:

$$\frac{1000}{0.1} \left[(1 + 0.1)^{s} - 1 \right] = \rho$$

= 6015\$ دو لارأ

والمبلغ أعلاه (6015\$ دو لاراً) هو المبلغ المطلوب الآن لدفع قوائم الوقود للسنوات الخمس القادمة. وليس من المعقول أن يقوم الشخص بوضع مبلغ على حدة ليتم دفع الكمية المطلوبة سنوياً، ولكن يجب أن يتم الاستفادة من هذا المبلغ. ولنفرض أن بالإمكان وضعه في حساب توفير بالبنك بفائدة مقدار ها %6 للسنوات الخمس القادمة، ولنفرض بان قائمة التدفئة تدفع في نهاية كل سنة، وبهذا يمكن تعديل المعادلة الرياضية كما يلى:

$$\frac{A}{i-d} \left[\left(\frac{1+i}{1+d} \right)^n - 1 \right] = \rho$$

حيث d هي الفائدة السنوية عن وضع المبالغ بالمصرف ، وعليه سيكون المبلغ الكلي المدفوع كما يلي :

$$\frac{1000}{(0.1 - 0.06)} \left[\left(\frac{1 + 0.1}{1 + 0.06} \right)^5 - 1 \right] = \rho$$

\$5087 =

13-1-5 اقتصاديات الطاقة الشمسية الحرارية في توليد الكهرباء

يعد استخدام الطاقة الشمسية الحرارية في توليد الكهرباء من المجالات الحديثة التي لاتزال في مرحلة البحث والتطوير. ونظراً إلى أهمية هذا المجال فقد بدئ في تطويره بصورة جدية في نهاية السبعينات من هذا القرن عن طريق إقامة مجموعة من المحطات الشمسية الحرارية في عدد من الدول الصناعية كالولايات المتحدة وفرنسا واليابان. وقد أسفرت نتائج الدارسات والبحث عن إمكانية خفض تكاليف إنتاج الطاقة الكهربائية من محطات الطاقة الشمسية الحرارية الحديثة بنسبة عالية قد تصل إلى %80 مقارنة بتكلفتها من المحطات السابقة التي أنشئت لأغراض البحث والتطوير. وعند مقارنة كلفة إنتاج الطاقة الكهربائية من مصادرها التقليدية المعروفة مع تكاليف إنتاجها من الطاقة الكهربائية من مصادرها التقليدية المعروفة مع تكاليف إنتاجها من الطاقة الشمسية الحرارية يتضح عدم جدوى استغلال الطاقة الشمسية في الوقت الحاضر استناداً إلى كلفتها الأولية العالية.

أما إذا أضفنا عناصر أخرى غير الكلفة المباشرة إلى الطاقة المنتجة من مصادر الطاقة التقليدية مثل تكاليف الحد من تأثيرها على البيئة والمجتمع - وهذه التكاليف شبه معدومة - في حالة استخدام منظومات الطاقة الشمسية إذ أن تأثيرها على البيئة محدود جداً أو إمكانية تصدير كميات الوقود التي يمكن تلبيتها باستخدام الطاقة الشمسية فإن الصورة ستختلف نوعا ما .

2-13 الخلايا الشمسية الكهروضوئية

يتم توليد الطاقة الكهربائية من التحويل المباشر للطاقة الشمسية الضوئية باستخدام الخلايا الشمسية التي تتميز بعمر زمني طويل (أكثر من 20 عاماً) وبتكاليف تشغيل وصيانة منخفضة ، وتعمل دون حدوث حركة أو ضوضاء فضلاً عن عدم تلويثها للبيئة على حسب معرفتنا الحالية . ونظراً إلى التكاليف العالية اللازمة لإنشاء المحطات الكهروضوئية فإنه تجري الآن العديد من البحوث والدارسات التي تهدف بصفة رئيسية إلى خفض تلك الكلفة عن طريق تحسين كفاءة تحويل الخلايا والنظم الكهروضوئيه وذلك بمعالجة تركيبها وخفض كلفة تصنيعها واستخدام عناصر جديدة من أشباه الموصلات. وعلى الرغم من إدخال بعض التحسينات والتطوير على الخلايا الكهروضوئية إلا أن كفاءة تحويلها من طاقة ضوئية إلى طاقة كهربائية لا تزال محدودة ولم تتجاوز 20% على النطاق التجاري .

ويمكن الاستفادة بصورة عملية من الخلايا الشمسية في تطبيقات عديدة في المناطق النائية التي تكون فيها كلفة مد شبكات الطاقة الكهربائية مكلفة ، إذ تكون فيها كلفة بناء محطات أو توفير مولدات خاصة لهذه المناطق عالية عند تشغليها وصيانتها .

وتتوقف كلفة إنتاج الكهرباء من الخلايا الشمسية على عدة عوامل أهمها تكاليف إنشاء المحطة ، والعمر الافتراضي لها ، وتكاليف التشغيل والصيانة، وتكاليف تخزين الطاقة الكهربائية المولدة ، وقدرة المحطة ، ونوع الخلايا المستخدمة ، وأسس تصميم المحطة، إضافة إلى معدل الإشعاع الشمسي الساقط ، وظروف البيئة ، والعائد المادي من رأس المال المستثمر .

ويبين الجدول (13-1) التكاليف الكاملة للمنظومات (الإنشاء والتشغيل والصيانة) ومعدل تكاليف إنتاج الطاقة الكهربائية لعام 1994.

جدول (1-13) تكاليف إنتاج الطاقة الكهربائية من بعض الخلايا الشمسية للعام 1994

كلفة إنتاج الطاقة	تكاليف التشغيل	تكاليف الإنشاء		كفاءة		
الكهربائية (دو لار/كيلووات)	والصيانة (دولار/كيلووات	(دو لار/ مترمربع)		التحويل (%)		المصدر
, , ,	ُ _ ساعة)	ملحقات	خلايا	نظام	خلايا	·
0.28	0.15	50.0	300.0	11.5	15.0	- خلايا سليكونيه أحادية البلورية
0.27	0.15	50.0	260.0	10.8	14.0	- خلايا سليكونية متعددة البلورات (1)
0.21	0.15	50.0	200.0	11.5	15.0	 خلايا سليكونية متعددة البلورات (2)
0.13	0.15	50.0	150.0	7.7	10.0	 خلايا أفلام السليكون الرقيقة
0.27	0.24	50.0	160.0	7.7	10.0	- محطة سعه 1MW (أحادية المحور)
0.14	0.24	50.0	60.0	7.7.4	10.0	- محطة سعة 10MW (أحادية المحور)
0.21	0.24	100.0	250.0	15.4	20.0	- محطة سعة 1MW (تنائية المحور)
0.16	0.24	100.0	150.0	15.4	20.0	- محطة سعة 10MW (ثنائية المحور)

ويتضح من الجدول أن كُلفة إنتاج الطاقة الكهربائية من هذه المصادر لا تزال عالية مقارنة مع كلفة إنتاج المصادر التقليدية الأخرى والتي يتراوح بين 0.04 و0.08 دو لار. إلا أنه مع تطور تقنية الخلايا الشمسية والنظم الكهروضوئية فإن كلفة الطاقة الكهربائية المولدة من الطاقة الشمسية سوف تتخفض إلى الحد الذي قد يسمح باستغلالها اقتصادباً.

3-13 طاقة الرياح

إن التقدير الاقتصادي لطاقة الرياح يتضمن عدة عوامل أهمها ما يلي:

- أ الطاقة الكهربائية السنوية المولدة من طاقة الرياح.
 - ب الكلفة الاستثمارية للمحطة .
- ج معدل الرأسمال السنوي (محسوب بواسطة تحويل الكلفة الاستثمارية مضافاً اليها الفائدة السنوية) .
 - د مدة المقاولة التي تتضمن شراء أجهزة توليد الطاقة .

- ه عدد السنوات التي يتم خلالها إعادة مبلغ رأس المال.
 - و كلفة الصيانة والتشغيل.

والطريقة التي يمكن بها حساب الكلفة هي التالية:

الكلفة لوحدة الطاقة الكهربائية المولدة من طاقة الرياح يمكن تقدير ها باستخدام المعادلة التالبة :

$$CR \setminus E + M = g$$

g = 2 كلفة وحدة الطاقة المولدة من طاقة الرياح

C = الر أسمال المستثمر

استرداد الرأسمال = R

الطاقة السنوية المولدة من المنظومة = E

M = كلفة الصيانة و التشغيل لوحدة الطاقة المولدة

ويمكن حساب R من المعادلة التالية:

$$\frac{X}{1-(1+X)^{-n}} = R$$

حيث X = المعدل السنوي المطلوب للتضخم = n عدد السنين التي يمكن بها تغطية الكلفة

أما الطاقة بالكيلوواط - ساعة فيمكن حسابها باستخدام المعادلة التالية:

$$(H \times P_r \times F) T = E$$

حيث H = arc الساعات بالسنة (h = 8760 hr/yr) = arc القدرة لكل مروحة (كيلوواط) = F = arc السنوية للعنفة (التوربين) = T = arc المراوح

وتحسب كلفة الصيانة M كالتالى:

$$KC \setminus E = M$$

حيث K= معامل تمثيل كلفة التشغيل السنوية لمزرعة الرياح كجزء من الكلفة الكلية وتساوى 0.025 أو 0.025 من الكلفة حسب تقدير جمعية طاقة الرياح الأوروبية .

ويتضح من السابق أن الطاقة السنوية المولدة من عنفة (توربين) الرياح تعتمد على منحنى الطاقة ، وسرعة الرياح للعنفة (التوربين) ، ومعدل تذبذب سرعة الرياح بالموقع وقت عمل العنفة (التوربين).

أما معامل السعة فهو مصطلح يستخدم بكثرة لتوضيح إنتاجية محطة توليد لفترة معينة من الزمن. فإذا استطاع توربين أن يعمل خلال السنة فإن له معامل سعة يعادل 0.1(%100). ولكن في الحقيقة لا يمكن أن تكون سرعة الرياح ثابتة وفي سرعتها القصوى دائماً خلال السنة، ولهذا فإن للعنفة (التوربين) معامل سعة أقل من 1.0 دائماً، وفي أفضل المواقع يتراوح معامل السعة بين 0.3 و 0.4.

والسعر الاستثماري لتوربينات الرياح يتراوح من 500\$ إلى 900 دولار أو ما يعادله للكيلوواط المنتج، أو ما يقارب 450 \$ إلى 650\$ في المتر المربع من مساحة الجزء الدوار.

ولعَنفات (لتوربينات) رياح تصل زمن عملها بين 20 و15 عاماً ، وفي مناطق ذات سرعة رياح عالية فإن الطاقة المولدة منها تكون منافسة للطاقة المولدة من المصادر التقليدية.

4-13 الكتلة الحيوية

في بعض دول أوربا يوجد سوق متنام للهاضمات. ففي الدنمارك توصل البرنامج الحكومي لدر اسة اقتصاديات الهاضمات بعد ستة أعوام من التجارب إلى أن محطات إنتاج الغاز الحيوي من المخلفات تكون اقتصادية إذا تم بناؤها وفق التكنولوجيا المتوفرة شريطة استيفاء الشروط الثلاثة التالية:

- أ أن يتم بيع الغاز بأسعار مقاربة لأسعار الغاز الطبيعي .
- ب أن تعمل محطة الغاز الحيوي على إنتاج الحرارة والطاقة .
 - ج أن يتم استخدام المواد العضوية من مخلفات المصانع.

ومن الأمثلة على اقتصاديات الغاز الحيوي قرية بيورا (Pura) في جنوب الهند التي تقوم محطة إنتاج الغاز الحيوي فيها بتزويد غاز الميثان لمولد سعته ٥ كيلووات من

الكهرباء يستخدم للإنارة وتشغيل مضخات المياه. وبعد أربع سنوات من العمل كانت كلفة الطاقة الكهربائية 0.25 دو لار للكيلووات ـ ساعة ، وهذا السعر عال نوعا ما عند مقارنته بسعر الكهرباء الواصل من الشبكة الكهربائية. ولكن دراسة أخرى بينت أن استخدام فضلات الحيوانات يمكن أن يزيد من كمية الغاز ويقلل السعر إلى النصف . وبالنسبة إلى الطاقة المستخلصة من الخشب فإن التقدير الاقتصادي للخشب المزروع في مزارع غير اعتيادية في شمال شرقي البرازيل ، والتي يكون فيها إنتاج الخشب غير مثالي لعدم توفر المياه الكافية ، يتبين منه أن الخشب يمكن أن ينتج طاقة بسعر 1.4 لكل جيغا جول، وهذا السعر منخفض جداً نتيجة للخبرة المتراكمة في هذا النوع من الزراعة وقلة أجور العمالة ، كما أنه سعر "أقل بكثير من الأسعار العالمية التي قد تصل في أمريكا إلى ما بين 3.9 و 2.7 لكل جيغاجول ، ومن المتوقع أن ينخفض السعر إلى ما بين 2.7 و 1.9 لكل جيغاجول في عام 2010 .

و بالنسبة إلى فضلات الغابات ، ففي النمسا تتوفر بقايا الأخشاب والأغصان بأسعار رخيصة تعادل \$5.95 للمتر المكعب من الخشب الجاف أو حوالى \$1.05 لكل جيغا جول ، وذلك نتيجة لتراكم نفايات الغابات .

أما بالنسبة إلى توليد الطاقة الكهربائية فيعتمد سوق استخدام مصادر الكتلة الحيوية على كفاءة التحويل التي يمكن الوصول إليها بوجود التقنيات الحديثة. ففي المملكة المتحدة بلغت كلفة الكيلوواط – ساعة المولدة من غاز نفايات المطامر \$0.08\$ بينما بلغت كلفة الكيلوواط من الطاقة المولدة من النفايات الصلبة حوالي \$0.1 ، وقد نزلت هذه الكلفة في عام 1994 إلى \$0.050 و \$0.0576 . وهذه المبالغ قليلة مقارنة بما كانت عليه كلفة الطاقة الكهربائية المولدة من توربينات تعمل بمحارق الخشب والتي بلغت حوالي \$0.13 لكل كيلوواط – ساعة .

وأما بالنسبة للايثانول المنتج في البرازيل فإن كلفة إنتاجه تختلف باختلاف المنطقة وإدارة المواقع ، وقد وصلت في ولاية سانت باولو إلى \$0.18 لكل لتر أي مايعادل \$7.9 لكل جيغا جول ، ويمكن أن ينزل إلى \$0.15 لكل لتر بعد فترة وجيزة .

13-5 الطاقة المائية

تختلف مصادر الطاقة المائية عن مصادر الطاقة المتجددة الأخرى لأنها متطورة جداً من الناحية التقنية. ولحساب سعر الوحدة الكهربائية المنتجة من هذه المحطات يجب أن نقوم بتقدير ما يلي:

- أ الكلفة الاستثمارية والمدة اللازمة للإنشاء .
 - ب الكلفة السنوية للتشغيل والصيانة .
 - ج معامل الحمل خلال عمر المحطة.
 - د معدل التخفيض المناسب.

ويمكن تقدير السعر إذا افترضنا أن كلفة تشغيل مثل هذه المحطات قليلة مقارنة بالكلفة الاستثمارية ، وأن معامل الحمل يبقى ثابتاً خلال عمر المحطة . وفي هذه الحالة يمكن تقدير سعر الكيلووات – ساعة كما يلى :

عند معرفة الكلفة الاستثمارية اللازمة للمحطة يمكننا تخمين كلفة الطاقة المولدة بالكيلووات – ساعة وبما أنه لا توجد مصروفات للوقود ، وأن كلفة الصيانة والتشغيل قليلة جداً مقارنة بالكلفة الأولية ، فإنه يمكن أن نرمز للكلفة الأولية لكل كيلوواط – ساعة بالرمز C (دولار لكل كيلوواط – ساعة) وهناك متغيرات أخرى كعامل الحمل ، والذي يمكن أن نعتبره 0.4 خلال عمر المحطة الكلي وبما أن هنالك 8760 ساعة في السنة ، فان كل كيلووات منصوب يستطيع توليد 3500 كيلووات – ساعة في السنة . يمكننا أن نفترض أن عمر المحطة سيكون 50 عاماً ، لذا فان إنتاج الكيلوواط المنصوب سبكون ن 175000 كيلوواط المنصوب المحطة عمر المحطة .

وإذا افترضنا ، كمحاولة أولى ، أن كلفة الكيلوواط – ساعة يمكن تقدير ها من الكلفة الأولية للكيلووات المنصوب مقسوماً على عدد الكيلووات – ساعة التي ينتجها كل كيلووات منصوب خلال عمر المحطة ، وإذا كان سعر الكلفة الأولية للكيلوواط المنصوب هو 1500\$ للكيلوواط فإن كلفة الكيلوواط – ساعة سيكون \$0.08\$. وهذا هو تقدير أولي يمكن أن يكون بعيداً عن الحقيقة في معظم الأحيان ، لأن كلفة الطاقة المولدة من الطاقة المائية أرخص من الرقم المذكور أعلاه . وعلى سبيل المثال فإن المحطة

الكبيرة المنصوبة في سكوتلندا كان سعر الوحدة المنتجة فيها في عام 1994 هو \$0.025 لكل كيلوواط ــ ساعة .

13-6 طاقة المد والجزر

إن حساب اقتصاديات طاقة المد والجزر معقدة ، ومن الصعب الحصول على منح أو قروض لتمويل مثل هذه المحطات وذلك لكون أسعار الطاقة المنتجة من هذا المصدر أعلى من سعر الطاقة المولدة من المصادر التقليدية . ولكن عندما تزداد أسعار مشتقات الطاقة التقليدية فإنه يمكن أن يكون لهذا المصدر جاذبية اقتصادية . أمّا في الظروف الحالية فإن هذا المصدر يبدو بعيداً عن التطبيق التجاري .

7-13 طاقة الأمواج وطاقة حرارة المحيطات

إن طاقة الأمواج وحرارة المحيطات تتميّز ، كبقية مصادر الطاقة المتجددة الأخرى، بكلفتها الاستثمارية الأولية العالية . وهذه الكلفة الأولية العالية ناتجة من الحاجة إلى بناء هياكل كبيرة لاحتواء كامل الموجة التي ينتج عنها استخلاص أكبر كمية ممكنة من الطاقة في حالة طاقة الأمواج ، ولاحتواء التوربينات والمبادلات الحرارية وغيرها في حالة حرارة المحيطات . وتتراوح الكلفة السنوية للتشغيل والصيانة لهذا النوع من المحطات بين 3% و 8% من الكلفة الأولية . وهذه المصادر ، كغيرها من مصادر الطاقة المتجددة ، لا يكون استخدامها اقتصادياً إلا إذا نزلت كلفة الكيلوواط إلى أقل من 1500 دولار .

ومن المشاكل المترتبة على الكلفة الأولية العالية أن استعادة النفقات تستغرق مدة طويلة، وهذا عامل غير مشجع للحكومات والمستثمرين لتوظيف أمو الهم في هذا الاتجاه.

ومن الاعتبارات المهمة كثافة الطاقة من هذه المصادر ، وأسعار مصادر الطاقة التقليدية ، وإمكانية الاستخدام ، ومن الاعتبارات المهمة وهذه بالطبع تختلف من بلد إلى آخر . وبناءً على ذلك فإن تقدير اقتصاديات هذا المصدر يختلف من بلد الى آخر.

8-13 طاقة الحرارة الجوفية

تعتبر طاقة الحرارة الجوفية من أكثر الطاقات الواعدة والتي شهدت نمواً سريعاً في استخدامها . ومن أسباب نمّو هذه التقنية العوامل البيئية ، والكلفة المعقولة في بعض استخداماتها ، بالإضافة إلى كمية الحرارة المستخرجة . فحقول الماء الحار هي أحد الأمثلة الجيدة على هذا النمو ، إذ انخفضت كلفتها الأولية من 3000\$ دو لار في السنة للسعة بالكيلوواط إلى 2600\$ دو لار خلال عقد واحد فقط ، وانخفضت كلفة الصيانة من للسعة بالكيلوواط إلى \$0.002 دو لار ، بينما انخفض سعر الكيلوواط – ساعة المنتج من 0.085 دو لار في هذه الفترة . ومن المحتمل أن ينخفض سعر الكيلوواط – ساعة إلى اقتصاديات المصادر الجوفية ذات الحقول التي تحتوي على طاقة قايلة فإنها تعتمد على عدة عوامل سياسية واقتصادية مثل توفر مصادر الطاقة التقليدية وأسعارها ور غبة الحكومات في الاستثمار في مصادر الطاقة المتجددة ودرجة أهمية المحافظة على البيئة من منطقة ما .

9-13 مقارنة اقتصادية لمختلف مصادر الطاقة في إنتاج الطاقة الكهربائية

تتوقف تكلفة استغلال مصادر الطاقة المتجددة على عدة عوامل أهمها تكاليف نصب وإنشاء المنظومات ، وعمرها الافتراضي ، وتكاليف التشغيل والصيانة والخزن ، وقدرة المنظومة ، وكفاءة التحويل ، والظروف البيئية ، والعائد المادي من رأس المال . وعلى الرغم من قلة فرص الاستغلال الاقتصادي لمصادر الطاقة المتجددة في الوقت الحاضر فإنه أمكن استخدامها بصورة واسعة في عدة مجالات كطاقة المساقط المائية ، وطاقة الرياح ، والطاقة الشمسية الكهروضوئية ، والطاقة الشمسية الحرارية .

ويبين الجدول (13-2) مقارنة لأسعار النصب والطاقة الكهربائية المنتجة لمختلف منظومات الطاقة التقليدية والطاقة المتجددة وذلك للحصول على صورة كاملة للطاقة الكهربائية المولدة من مصادر الطاقة المتجددة مقارنة بالطاقة الكهربائية المولدة حالياً من مصادر الطاقة التقليدية.

ويتضح من الجدول أدناه أن تكلفة إنتاج الكيلووات ـ ساعة من الطاقة الكهربائية من المصادر التقليدية لا تزال أقل من كلفته من المصادر المتجددة . والمصدر المتجدد الوحيد المنافس في الوقت الحاضر هو الطاقة المائية .

جدول (13-2): مقارنة اقتصادية لمختلف مصادر الطاقة في مجال إنتاج الطاقة الكهربائية

كلفة الطاقة الكهربائية المولدة سنت/كيلووات ــ ساعة	كلفة التشغيل والصيانة سنت/كيلووات ــ ساعة	كلفة النصب دولار/كيلووات	المصــــدر
8 - 2		2000 - 6000	طاقة المساقط المائية
7 – 5	0.1 - 0.05	1000 - 800	طاقة الرياح
		4500 - 3900	الطاقــة الكهروضــوئية (خلايـــا
			السليكون الأحادي والمتعدد
			البلورات)
		2000	الطاقـــة الكهروضـــوئية (خلايـــا
77 50		14000 11000	الأغشية الرقيقة)
75 - 50		14000-11000	الطاقـــــــــــــــــــــــــــــــــــ
17 – 12		3500 – 2800	المنظومة) الطاقــة الشمســية ــ المركــز ات
17 - 12		3300 – 2800	الطاقعة الشمسية – المرحرات الشمسية (80 ميغاوات)
14		2500	الكتلة الحيوية (الحرق المباشر)
10 – 6		2500 – 400	الكتلة الحيوية (التقنيات الحديثة)
10 0		1700 – 1600	الحرارة الجوفية (محطات تجارية)
8 – 6.2		2500 – 2400	الحرارة الجوفية (محطات مياه
			حارة)
8		1800	طاقة المد والجزر
25 – 12	1	10000	حرارة المحيطات
4-2		2300 – 2100	الطاقة النووية (1000ميغاواط)
4 – 3	0.35	650 – 450	محطات غازية
10 - 5	2 - 1.5	1500 – 1200	محطات بخارية (تعمل بالفحم
			الحجري)

أسئلة تقويمية

- 1. يعد استغلال الطاقة الشمسية في مجال تسخين المياه من أكثر التطبيقات انتشاراً في مختلف دول العالم. ما هو سبب عدم انتشار هذه المنظومات في معظم الدول الغربية؟
- أيهما أقل كلفة توليد الطاقة الكهربائية من الطاقة الشمسية من الطرق الحرارية أم إستخدام
 الخلايا الشمسية الفولطاضوئية؟
- ٣. ما هي أفضل الطرق المستخدمة في توليد الطاقة الكهربائية من مصادر طاقة الكتلة الحيوية من الناحية الإقتصادية ؟
- كما هو معروف بأن كلفة الطاقة الكهربائية المولدة من الطاقة المائية رخيصة جداً. فما
 هي حدود استخدام هذه التقنية ؟
- إن طاقة المد والجزر وطاقة الأمواج من الطاقات المتجددة الواعدة. ما هي حدود
 استغلالهما لإنتاج الطاقة الكهربائية ؟
- 7. أي التقنيات في مجال الطاقة المتجددة هي الأفضل استخداماً للوطن العربي ؟ صنف أفضلية كل تقنية لكل دولة عربية حسب مناخها وطبيعتها الجغرافية ؟