

جامعة الدمسام

كلية الدراسات التطبيقية وخدمة المجتمع رياضيات للادراة MATH120

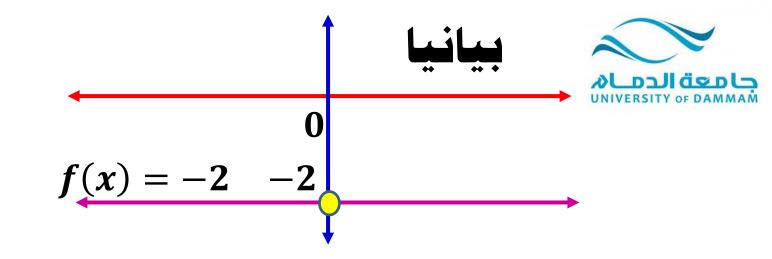
الدوال ومعادلة الخط المستقيم

دکتور محمد ترکي

الدوال كثيرات الحدود

العوالة التابية هي دالة لها قيمة ثابتة مهما تغيرت قيمة المتغير x

$$f(x) = 5$$


$$f(-5) = 5$$

$$f(\sqrt{5}) = 5$$

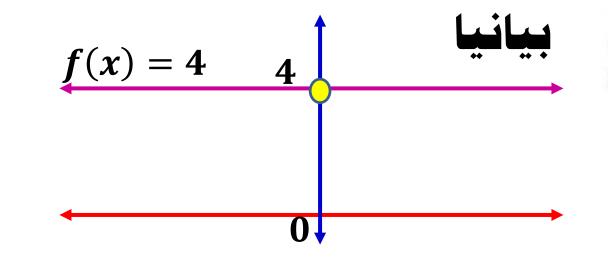
الدالة 5 = (x) يمثلها بيانيا خط مستقيم يوازي محور السينات ويقطع محور الصادات في النقطة (0,5) ومداها يساوي {5}

$$f(-5) = 5$$

 $f(\sqrt{5}) = 5$
 $f(2) = 5$
 $f(-2) = 5$
 $f(-5) = 5$

$$f(x) = -2$$
 $f(5) = -2$
 $f(4) = -2$
 $f(2) = -2$

الدالة 2- =(x) يمثلها بيانيا خط مستقيم يوازي محور السينات ويقطع محور الصادات في النقطة (2-2) ومداها يساوى {2-}


الدالة الثابتة من الدرجة الصفرية

$$f(x) = 4$$

$$f(2) = 4$$

$$f(5)=4$$

$$f(-7)=4$$

الدالة 4 = (x) يمثلها بيانيا خط مستقيم يوازي محور السينات ويقطع محور الصادات في النقطة (0,4) ومداها يساوي {4}

الدالة الثابتة من الدرجة الصفرية

الدالة الخطية : هي دالة من الدرجة الاولي أي ان أكبر أس للمتغير X حامعة الدوالة في الدالة هو واحد في الدالة هو واحد

$$f(x) = 2x$$

$$f(x)=3x-2$$

$$f(x) = 5 - 4x$$

$$f(x) = 5x + 1$$

الدالة الخطية من الدرجة الاولي

الدالة التربيعية : هي دالة من الدرجة الثانية أي ان أكبر أس الدرجة الثانية للمتغير X في الدالة هو 2

$$f(x) = x^2 + 2x - 1$$
 $f(x) = 3x^2 + 5x + 6$

$$f(x) = 2 + 5x - 2x^2$$
 $f(x) = x^2$

الدالة التربيعية من الدرجة الثانية

الدالة التكعيبية : هي دالة من الدرجة الثالثة أي أن أكبر أس حامعة الثالثة أي أن أكبر أس الدرجة الثالثة للمتغير X في الدالة هو 3

$$f(x) = x^{3} + 8x^{2} - 2x + 4$$

$$f(x) = 2x^{3} + 5x^{2} + 4x - 11$$

$$f(x) = 2 + 5x^{2} - 5x^{3}$$

$$f(x) = x^{3} + 4$$

الدالة التكعبيية من الدرجة الثالثة

تزايد وتناقص الدالة علي فترة

في حالة دراسة تزايد وتناقص الدالة في فترة

اولا: نعدد قيمة اختيارية للمتغير x في الفترة ولتكن x1

 $f(x_1)$ نوجد قيمة الدالة عند x_1 وهي ثانيا : نوجد قيمة الدالة عند

 $x_2 > x_1$ ثالثا : نعدد قيمة اختيارية اخري للمتغير x_2 في الفترة ولتكن $x_2 > x_1$ بحيث المتغير ا

 $f(x_2)$ وهي x_2 وابعا: نوجد قيمة الدالة عند

اذا كان $f(x_2) > f(x_1)$ فان الدالة تزايديه في الفترة

اذا كان $f(x_2) < f(x_1)$ فان الدالة تناقصية في الفترة

$$f(x) = x^2 - 5x + 6$$
 in [-2, 1]

$$x_1 = -1 \in [-2, 1]$$

$$f(-1) = (-1)^2 - 5(-1) + 6 = 1 + 5 + 6 = 12$$

$$x_2 = 0 \in [-2, 1]$$
, $x_2 > x_1$

$$f(0) = (0)^2 - 5(0) + 6 = 0 + 0 + 6 = 6$$

$$\Rightarrow f(x_2) < f(x_1)$$

الدالة تناقصية في الفترة

$$f(x) = x^2 + 3x + 2$$
 in [1, 4]

$$x_1 = 2 \in [1, 4]$$

$$f(2) = (2)^2 + 3(2) + 2 = 4 + 6 + 2 = 12$$

$$x_2 = 3 \in [1, 4], \quad x_2 > x_1$$

$$f(3) = (3)^2 + 3(3) + 2 = 9 + 9 + 2 = 20$$

$$\Rightarrow f(x_2) > f(x_1)$$

الدالة تزايديه في الفترة

$$f(x) = x^3 + x^2 - 5$$
 in [0, 5]

$$x_1 = 1 \in [0, 5]$$

$$f(1) = (1)^3 + (1)^2 - 5 = 1 + 1 - 5 = -3$$

$$x_2 = 4 \in [0, 5], x_2 > x_1$$

$$f(4) = (4)^3 + (4)^2 - 5 = 64 + 16 - 5 = 75$$

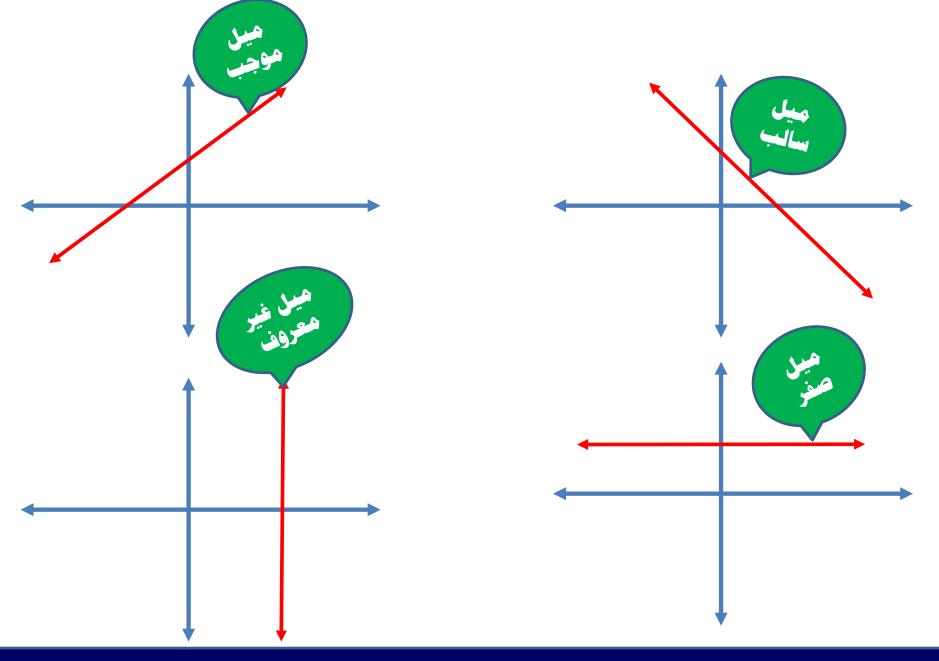
$$\Rightarrow f(x_2) > f(x_1)$$

الدالة تزايديه في الفترة

$$f(x) = 2 + 5x^2 - x^3$$
 in [-1,3]

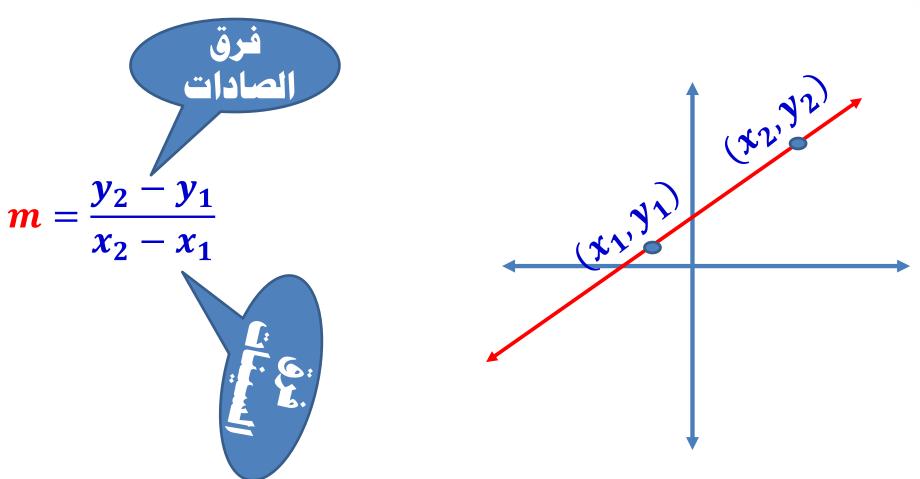
$$x_1 = 0 \in [-1, 3]$$

$$f(1) = 2 + 5(0)^2 - (0)^3 = 2 + 0 - 0 = 2$$


$$x_2 = 1 \in [-1, 3], x_2 > x_1$$

$$f(1) = 2 + 5(1)^2 - (1)^3 = 2 + 5 - 1 = 6$$

$$\Rightarrow f(x_2) > f(x_1)$$

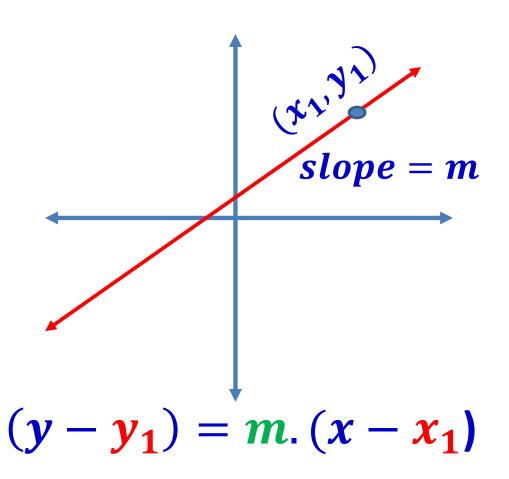

الدالة تزايديه في الفترة

ميل الخط المستقيم المار بنقطتين

(1,3) , (2,5) مثال اوجد ميل الخط المستقيم المار بنقطتين (2,5)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 3}{2 - 1} = \frac{2}{1} = 2$$

(-2,1) , (6,3) , (6,3)



$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 1}{6 - (-2)} = \frac{2}{8} = \frac{1}{4}$$

الحالات المختلفة لمعادلة الخط المستقيم

-1) معادلة الخط المستقيم بمعلومية ميله ويمر بنقطة معلومة

3 = 3 وميله (2, -1) وميله (2, -1)

$$(y-y_1)=m.(x-x_1)$$

$$(y-(-1))=3.(x-2)$$

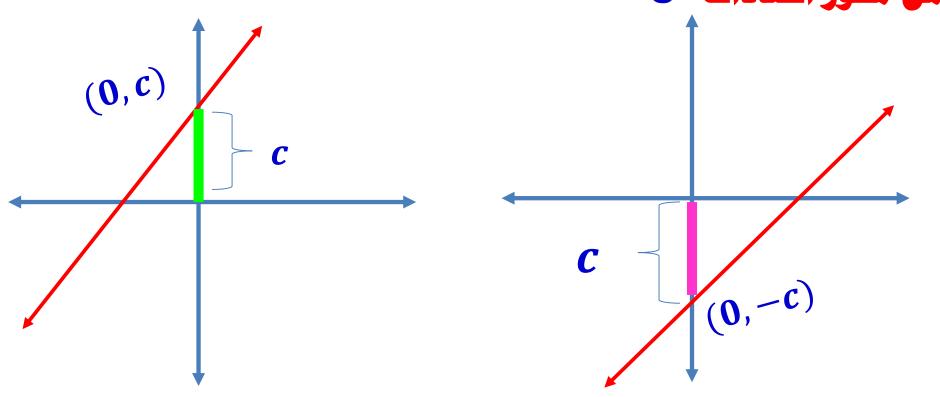
$$y + 1 = 3 x - 6$$

$$y = 3.x - 6 - 1$$

$$y = 3x - 7$$

-1 = 0 (-3, 5) (-3, 5) (-3, 5) (-3, 5)

$$(y-y_1)=m.(x-x_1)$$


$$(y-5)=-1.(x+3)$$

$$y-5=-x-3$$

$$y = -x - 3 + 5$$

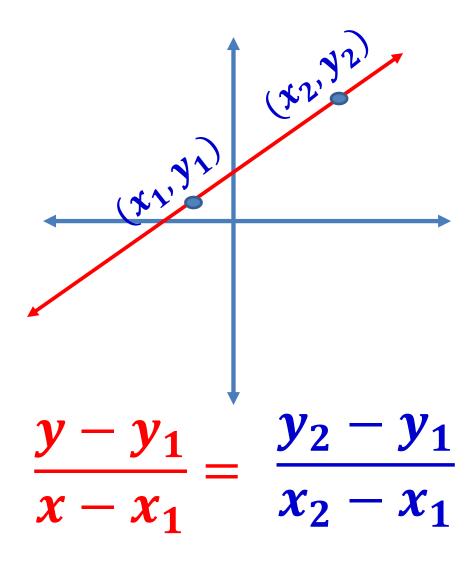
$$y=-x+2$$

2-) معادلة الخط المستقيم بمعلومية ميله m وطول الجزء المقطوع من محور الصادات c

$$y = m x + c$$

مثال 1 اوجد معادلة الخط المستقيم الذي ميله 2 جامعة الحمالة محور الصادات الموجب جزءا طوله 4 وحدات الموجب جزءا طوله 4 وحدات

$$m = 2$$
 $c = 4$ $y = mx + c$ $y = 2x + 4$


مثال2 اوجد معادلة الخط المستقيم الذي ميله $\frac{1}{3}$ وطول الجزء المقطوع من محور الصادات السالب جزءا طوله 7 وحدات

$$m = \frac{1}{3}, c = -7 \qquad y = m x + c$$

$$y=\frac{1}{3}x-7$$

3-) معادلة الخط المستقيم يمر بنقطتين معلومتين

مثال اوجد معادلة الخط المستقيم المار بالنقطتين

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1} + \frac{y - 3}{x - 1} = \frac{8 - 3}{5 - 1}$$

$$\frac{y-3}{x-1} = \frac{5}{4} \qquad 4y-12 = 5x-5$$

$$4y = 5x - 5 + 12$$

$$4y = 5x + 7$$

(4,5) (-1,6) (-1,6) (4,5)

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1} + \frac{y - 5}{x - 4} = \frac{6 - 5}{-1 - 4}$$

$$\frac{y-5}{x-4} = \frac{1}{-5} \longrightarrow -5y + 25 = x-4$$

$$-5y = x - 4 - 25$$
 $-5y = x - 29$

تطبيقات اقتصادية وتجارية

جامعة الحمام حدد نقطة توازن السوق بالنسبة للقانوني الطلب والعرض التاليين:

(1) ...
$$y = 25 - 2 \times :$$

(2) ...
$$y = 3x + 5$$
 : $2x + 5$

الحل: عدد نقطة توازن السوق: ١ بالتعويض في معادلة:

$$y = 25 - 8$$
 $3x + 5 = 25 - 2x$

$$5x = 20$$

$$x = 4$$

(4,17)

$$5 \times f(3) = ...$$
 فان $f(x) = 2$

$$f(x) = 2$$

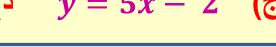
$$f(x) = 2$$

3 (

أ) الاولي

ون الدرجة
$$f(x) = 2x^3 + 5x^5 + 4x - 11$$
 من الدرجة (2)

و) الدالة
$$f(x) = 2x^3 + 5x^5 + 4x - 11$$
 من الدرجة (2)


15 (**?**

الخامسة

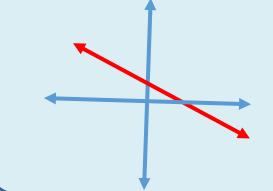
3) معادلة الخط المستقيم الذي ميله 2 ويقطع جزءا من محور الصادات السالب طوله 5 وحدات هي

$$y = 2x + 2$$
 (2) $y = 5x - 2$ (3) $y = 2x - 5$ (4) $y = -2x + 5$

$$y = -2x + 5 \qquad ($$

$$y=2x-5$$
 ($\dot{\mathbf{y}}$

$$y = 2x -$$


$$y=2x-5$$

$$y=2x-5$$

$$y=2x-5$$

$$y=2x-5$$

$$y = 2x + 3$$

5) ميل المستقيم المار بالنقطتين (6, 4) , (1, 3) يساوي

2 (🛁

(1

3 (2

2) الدالة f(x) = 7 يمثلها بيانيا خط مستقيم يقطع محور الصادات في النقطة

(→ (7,7) (**∂** (0,7) ((0,0)

- 3) معادلة الخط المستقيم الذي ميله 3 ويمر بالنقطة (1,2) هي
- y = x + 3 (2) y = 3x 1 (3) y = x 3 (4) y = 3x + 1 (6)
 - 4) ميل الخط المستقيم المرسوم في الشكل المقابل

(7,0)