(1) البرمجة الخطية هي حالة خاصة من البرمجة الرياضية اذا كانت:

- (أ) العلاقات بين المتغيرات خطية.
 - (ب) القيود على شكل متباينات.
 - (ج) هناك إمكانية لبرمجة المسألة
 - (د) يوجد لها حـل أمثــل.

Linear Programming يعني: (٢)

- (أ) البرمجة الرياضية
 - (ب) البرمجة الخطية
 - (ج) بحوث العمليات
 - (د) برمجة الشبكات

(٣) المتباينة من النوع => (أقل من أو يساوي) تتحول الى مساواة في الصورة القياسية عن طريق:

- (أ) طرح متغير راكد.
- (ب) إضافة متغير راكد
- (ج) ضرب طرفي المعادلة ب(١٠)
- (د) نقل الطرف الأيمن الى الطرف اليسر مع تغيير الإشارة.

(٤) اذا كانت جميع عناصر صف دالة الهدف عند استخدام السمبلكس اصفار او قيم موجبة فهذا يدل على:

- (أ) هناك اكثر من حل أمثــل.
- (ب) الحل الأمثل قد تم التوصل اليه في الجدول السابق.
- (ج) الحل الأمثل قد تم التوصل اليه في الجدول الحالي.
- (د) لازال هناك مجال لتحسين الحل وإيجاد جدول جديد.

(٥) مصطلح Constraints يعنى:

- (أ) المتغيرات
 - (ب) الحلول
 - <u>(ج) القيود</u>
- (د) الركنيات

(٦) جدولة المشاريع تحتوي على:

- (أ) أسلوب المسار الحرج و أسلوب تقييم و مراجعة المشاريع.
 - (ب) الطريقة البيانية و طريقة السمبلكس
 - (ج) البرمجة الرياضية و البرمجة الخطية
 - (د) تحليل القرارات و شجرة القرار

(V) حساب التباين في طريقة PERT:

- (أ) يتم حسابه لجميع الأنشطة.
- (ب) يتم حسابه للأنشطة الحرجة فقط
 - (ج) يتم حسابه لجميع الاحداث.
- (د) يتم حسابه لبعض الأنشطة الحرجة.

(٨) المتغير الداخل في جدول السمبلكس هو:

- (أ) أكبر معامل سالب في صف دالة الهدف.
 - (ب) أقل معامل سالب في صف دالة الهدف.
 - (ج) أقل خارج قسمة للطرف الأيمن.
 - (د) الواحد الصحيح.

(٩) النشاط الحرج هو:

- (أ) النشاط الذي يمكن تأخير البدء فيه
- (ب) النشاط الذي لا يمكن تأخير البدء فيه
- (ج) النشاط الذي له وقت فائض اكبر من الصفر
 - (د) النشاط الوهمي

(١٠) المسار الحرج هو:

- (أ) الذي يحتوي على جميع الانشطة
- (ب) الذي يحتوى على الانشطة الحرجة
 - (ج) المسار الأقصر في الشبكة
 - (د) النشاط الحرج

(١١) القيد التالي يمكن ان يكون في برنامج خطي:

- $X1 X2 \le 0$ (1)
- X1 + X2 <= 0 (4)
- X1 + X2 < 36 (5)
 - X1 + X2 < 1 (2)

(١٢) الطريقة المبسطة هي:

- Decision Analysis (1)
 - Pivot Equation (ب)
- Graphical Method (で)
 - Simplex Method (2)

(١٣) علم الإدارة يعنى:

- Management Science (i)
- Business Administration (中)
 - Public Administration (z)
- Operations Management (2)

(١٤) كانت البداية الحقيقية لعلم بحوث العمليات:

- (أ) الحرب العالمية الثانية
 - (ب) في عام ٢٠٠٣
 - (ج) في عام ١٩١١
 - (د) مع ظهور الأنترنت

صياغة البرنامج الخطى (شاملاً الاسئلة من ١٥ الى ١٨)

تقوم شركة ملابس بتصنيع عدة منتجات من القطن، يتمثل أهمها في بدلات رجالية و بدلات نسائية ، حيث يبلغ سعر البدلة الرجالية 300 ريال، وتعتاج إلى 2 ساعة عمل في قسم القفصيل، و 300 ريال عمل في قسم الحياكة، بينما يبلغ ثمن البدلة النسائية 900 ريال، وتحتاج إلى 4 ساعات عمل في قسم القفصيل، و 1 ساعة عمل في قسم الحياكة ، وفي اللحظة التي يستوعب فيها السوق جميع المنتجات من كلا البدلات، لا تشتطيع الشركة توفير أكثر من 400 ساعة عمل في قسم الخياكة.

(١٥) المتغيرات الموجودة في المسألة هي:

- (أ) قسم التفصيل=X1 ، قسم الحياكة =x2
 - x2= ساعات العمل x1= ، القطن x2=
- (ج) بدلة رجالية=X1 ، بدلة نسائية =x2
 - (د) قسم الحياكة = X1 ، ساعات العمل =x2

(١٦) دالة الهدف في هذه المسألة تأخذ الشكل التالي:

- Max z=700x1+1650x2 (†)
 - Max z=400x1+650x2 (\hookrightarrow)
 - Max z=300x1+900x2 (z)
 - Min z=300x1+900x2 (2)

(۱۷) قيد قسم الحياكة هو:

- 3x1+2x2 < =400
- 3x1+x2 <= 650 (-)
- 5x1+5x2 <= 1050 (5)
- 6x1+4x2 <=400 (2)

(١٨) دالة الهدف في هذه المسألة من نوع:

- (أُ) تعظيم
- (ب) تدنیهٔ

الرسم البياني (شاملاً الاسئلة من ١٩ الى ٢٤)

إذا أعطيت البرنامج الخطى التالى و طُلب منك استخدام الرسم البياني في الحل:

Max
$$z = 40 x_1 + 50 x_2$$

s.t

$$x_1 + 2x_2 \le 40$$
 (1)

$$4x_1 + 3x_2 \le 120 \qquad (2)$$
$$x_1, x_2 \ge 0$$

(۱۹) القيد الثاني يتقاطع مع محور x1 في النقطة:

- (0,30) (1)
- (40,0) (-)
- (0,40) (τ)
- (2) (2)

(٢٠) القيد الأول يتقاطع مع محور x2 في النقطة:

- (0,20) (1)
- (0,40) ((-)
- (40,0) (5)
- (20,0) (2)

(٢١) تظليل القيد الأول يكون الى:

- (أ) اليسار (أسفل)
- (ب) اليمين(أعلى)

(٢٢) القيد الأول يتقاطع مع القيد الثاني في النقطة:

- (24,8) (1)
- (8,24) ((-)
- (20,30) (z)
- (30,20) (2)

(٢٣) قيمة دالة الهدف عن النقطة (24,8) تساوي:

- 187.
 - (ب)
 - (ج) ۲۲
- 177. (2)

(٢٤) لو افترضنا ان دالة الهدف هي Max z=40x1+30x2، فأن حل للمسألة يكون:

- (i) متكرر
- (ب) لا يوجد حلاً امثلاً
 - (ج) غير محدد
- (د) حلول متعددة مثلي

الطريقة المبسطة (طريقة السمبلكس)

لدينا البرنامج الخطي التالي (شاملاً الاسئلة من ٢٥ الي ٢٨)

Max
$$z = 40 x_1 + 50 x_2$$

s.t

$$x_1 + 2x_2 \le 40$$
 (1)

$$4x_1 + 3x_2 \le 120 \qquad (2)$$
$$x_1, x_2 \ge 0$$

(٢٥) دالة الهدف في الشكل القياسي لهذه المسألة ستكون على الشكل:

- Max z 40x1 + 50x2 = 0 (1)
- Max z 40x1 50x2 = 0 (-)
- Max z + 40x1 + 50x2 = 0 (ε)
 - Min z 40x1 50x2 = 0 (2)

(٢٦) القيد الأول في الشكل القياسي لهذه المسألة سيكون على الشكل:

- $X1 + 2x^2 s1 = 40$ (1)
- X1 + 2x2 + s1 = 40 (-)
- X1 + 2x2 + s1 < = 40 (ε)
- $X1 + 2x2 s1 \le 40$ (2)

(٢٧) القيد الثاني في الشكل القياسي لهذه المسألة سيكون على الشكل:

- $4x1 + 3x2 + s2 \le 120$ (1)
 - 4x1 + 3x2 s2 = 120 (-)
- 4x1 + 3x2 + s2 = 120 (ϵ)
- $4x1 + 3x2 s2 \le 120$ (2)

(٢٨) قيد عدم السالبية في الشكل القياسي سيأخذ الشكل التالي:

- X1,x2>=0 (1)
- X1+x2+s1+s2>=0 (-)
 - X1,x2,s1,s2>=0 (Ξ)
 - S1,s2>=0 (2)

يتبع، اذا كان جدول الحل الابتدائي (الأولى) على النحو التالي (للأسئلة من ٢٩ الي ٣٣)

2	<u> </u>	- / 6 - 7	<u> </u>	<u>G , </u>	<u> </u>
م أساسية	X1	X2	S 1	S2	الثابت
S1	1	2	*	*	40
S2	4	3	*	*	120
Z	-40	-50	0	0	0

(٢٩) المتغير الداخل من الجدول هو:

- $X1 \quad (1)$
- X2 (ب)
- S1 (5)
- S2 (2)

(٣٠) المتغير الخارج من الجدول هو:

- $X1 \stackrel{(i)}{(i)}$
- X2 (中)
- (ج) S1
- S2 (2)

(٣١) قيمة العنصر المحوري هي:

- (أ)
- (ب)
- (ج)
- ٣ (ك)

(٣٢) معادلة الصف المحوري (الارتكاز) الجديد هي:

- (1 2 * * 40) (1)
- $(0.5 \ 1 \ **\ 20) \ (\because)$
- $(0.5 \ 1 \ ** \ 40) \ (z)$
 - $(1 \ 0 \ * * 20) \ (2)$

(٣٣) معادلة صف Z الجديدة في الجدول الجديد هي:

- $(15\ 0\ *\ *\ 0)$
- (-40 -50 * * 1000) (·-)
 - (-15 0 * * 1000) (z)
- (-15 25 * * 0) (2

لنفترض أن جدول الحل النهائي لبرنامج خطى ما كالتالى: (الأسئلة من ٣٤ الى 37)

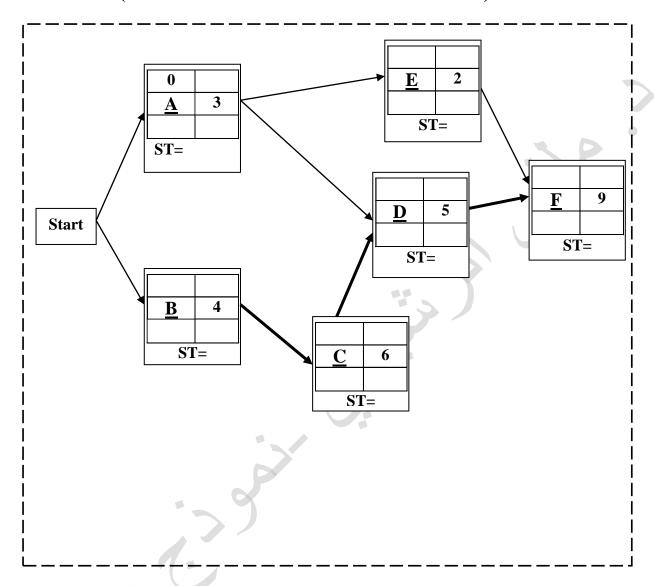
م أساسية	X1	X2	S1	S2	الثابت
X2	1	0	*	*	10
X1	0	1	*	*	6
Z	0	5	*	*	230

(٣٤) قيمة المتغير X1 هي:

- (ب) ۱٦
- رج) (2) (ع)

- (ب) 10
- (ج)

(٣٦) قيمة دالة الهدف Z هي:


- ٦٠ (ب)
- (ج) ۲٤٦
- 77. (2)

(٣٧) هل يمكن تحسين الحل لهذا الجدول:

- (j) K
- (ب) نعم
- (ج) المعلومات المعطاة غير كافيه
- طريقة السمبلكس لا توفر آلية للتعرف على إمكانية تحسين الحل

طريقة المسار الحرج CPM (الاسئلة من ٣٨ الى ٤٢)

إذا اعطيت شبكة الاعمال التالية (كل الحسابات مُعطاة ماعدا النشاط الأخير F و الأزمنة الفائضة)

(٣٨) زمن البداية المبكرة للنشاط F يساوي

- (ب) ۲۶
 - (ج)
 - 0 (7)

(۳۹) زمن النهاية المبكرة للنشاط F يساوي

- ۲٤ (أ)
- (ب) ۳۳
- 10 (5)
- ٤١ (١)

- (٤٠) الزمن الفائض للنشاط A يساوي

 - (ن) ۳ (ز) ۷ (د) ۲۰
- (٤١) النشاط الذي يمكن تأجيل البدء به هو:

 - (ب) D

 - B (z) C (2)
- (۲۲) لو افترضنا ان زمن النشاط A قد تغير و اصبح يساوي ١٠ فإن:
 - (أ) النشاط A سوف يصبح نشاط وهمي
 - (ب) النشاط A سوف يزيد من زمن إنجاز المشروع
 - (ج) نشاط A سوف يصبح نشاطاً حرجاً
 - (د) لن يحدث تغييراً للوضع الحالي

جدولة المشاريع وتقييمها PERT (الاسئلة من ٣٤ الى ٤٥) الجدول التالى يتمثل تسلسل الأنشطة الحرجة للمسار الحرج لمشروع ما:

		التقديــر			
التباين	المتوقع	(L) أكثر احتمالاً (M) تشاؤم (L)		تفاؤل (S)	رمز النشاط
		14	٥	£	A*
		17	9	٦	B*
		٣	۲	١	С

التباین = $(\frac{L-S}{s})^2$

S+4*M+L

قوانين قد تحتاج لها: الوقت المتوقع=

- (٤٣) الوقت المتوقع للنشاط الحرج A يساوي

 - ه (ب)
 - (ج) ۲

 - (٤٤) تباين النشاط الحرج B يساوي
 - ٤ (أ)
 - (ب)
 - (ج) کَج ، ٠

لهذا المشروع يساوي:	زمن الانجاز)) زمن المسار الحرج ((20)
---------------------	--------------	----------------------	-------

- (أ) غير موجود
 - (ب)
 - (ج) ۱٥
 - 0,0 (1)

تحليل القرارات

الجدول التالى يمثل بديلين مع وجود ثلاث حالات للطبيعة (الأسئلة من ٤٦ الى ٥٠):

	, **	919 C 0#	
ضعيف	متوسط	ختد	
- Y •	٤٠	٤.	عقارات
- 40	١.	۸٠	أسهم

(٤٦) وفقاً للمدخل التشاؤمي MaxMin ، فأن البديل الأفضل هو:

- (أ) اسهم و عقارات
 - (ب) عقار ات
 - (ج) اسها
- (د) لا يمكن الحكم بذلك

(٤٧) وفقاً لمدخل الندم Regret فإن البديل الأفضل هو:

- (أ) عقارات
 - (ب) اسهم
- (ج) لا يمكن الحكم بذلك
- (د) متساوية بالأفضلية

(٤٨) إذا كان احتمال (الاقبال الجيد، المتوسط) هو ٥٣٠٠ كلاً على حده ،فإن احتمال الاقبال الضعيف =

- ۰,۳٥ (أ) ٠,٧٠ (ب)
- (ج) لا يمكن قياسه
 - (2) ۳۰, ۲۰
- (٩٩) بَافْتراض استمرار فرضية فقرة رقم ٤٨ اعلاه، فإن القيمة النقدية المتوقعة للعقار =
 - o. (i)
 - (ب) هره
 - (ج) ۲۲
 - ٣,٥ (٤)
 - (٠٥) اذا كان المستثمر يبني قراره على القيمة النقدية المتوقعة، فسوف يختار:
 - (أ) متساويان في العائد
 - (ب) العقار
 - (ج) الأسهم
 - (د) يستخدم مصفوفة الندم

دعواتي للجميع بالتوفيق والنجاح