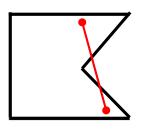
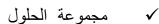
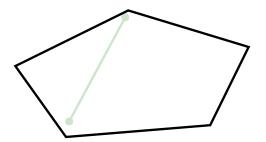
المحاضرة الرابعة

🛨 حل مسائل البرمجة الخطية


- ✓ Graphical Method طريقة الرسم البياني
 - ✓ Simplex Method طريقة السمبلكس


يعتمد على عدد المتغيرات في المسألة.


+ خصائص معالجة مشاكل البرمجة الخطية

تقع جميع الحلول الممكنة في منطقة محدبة, وتكون مجموعة نقاطها مجموعة محدبة.

المنطقة المحدبة: هي المنطقة التي تكون فيها كل النقاط الواقعة على الخط المستقيم الموصل بين أي نقطتين تقع كذلك في المنطقة المحدبة نفسها.

الممكنة محدودة بعدد نهائي من الجوانب

✓ أي حل أمثل لا بد وأن يقع على احد أركان منطقة الحلول الممكنة (النقاط الركنية).

🛨 طريقة الرسم البيانج_

الخطوة الأولى <u>..</u>

تحديد منطقة الحلول المقبولة أو الممكنة

Feasible solutions

التي تتحقق عندها المتباينات او القيود

(منطقة تقاطع مناطق الحل للقيود = التي تتحقق عندها جميع قيود

المسالة)

الخطوة الثانية

الحصول على قيمة دالة الهدف عند كل نقطة من نقاط رؤوس المضلع المحدب (النقاط الركنية) في منطقة الحلول المقبولة, تكون عندها دالة الهدف أكبر (أصغر) ما يمكن.

+ حالات خاصة في البرمجة الخطية

- ✓ قد يوجد تكرار (تحلل) Degenerate (في الطريقة المبسطة)
- ✓ قد يوجد حلول مثلى متعددة Optimal solutions (بمجرد النظر الى المسألة)
 - ✓ قد لا يوجد لها حل Infeasible (من الرسم البياني)
 - √ قد يوجد لها حل غير محدود Unbounded (من الرسم البياني)

🛨 خطوات طريقة الرسم البيانج

- تحويل متباينات القيود الى معادلات, و عملية التحويل هذه تجعل القيد في صيغة معادلة خطية يمكن تمثيلها بخط مستقيم.
 - تحديد نقاط تقاطع كل قيد مع المحورين والتوصيل بين هاتين النقطتين بخط مستقيم لكل قيد.

- رسم القيود على الشكل البياني بعد ان يتم تحديد نقاط التقاطع وتحديد منطقة الحل الممكن.
 - تحديد الحل الأمثل (الحلول المثلى) والذي يقع على أحد نقاط زوايا المضلع (نقطة ركنية) من خلال:
 - أ- إيجاد قيم المتغيرات عند هذه النقاط.
 - ب- اختيار أكبر (أصغر) قيمة بعد التعويض بدالة الهدف

井 مثـال معرض الهفوف للرفـوف

	الطاولات	الكراسي	
	(للطاولة)	(للكرسي)	
ربح القطعة بالريال	7	5	الوقت المتاح يومياً
النجارة	ساعة 3	ساعة 4	2400
الطلاء	ساعة 2	ساعة 1	1000

قيود أخرى:

- عدد الكراسي المُصنعة لا يزيد عن 450 كرسي
 - يجب تصنيع 100 طاولة على الأقل يومياً

🛨 صياغة البرنامج الخطح

المتغيرات:

X1 = عدد الكراسي المصنعة

x2 = عدد الطاولات المصنعة

دالة الهدف من نوع تعظيم Maximize :

Max z= 7 x1 + 5 x2

$$3 \times 1 + 4 \times 2 \le 2400$$

قيد الطلاء

$$2 x1 + 1 x2 \leq 1000$$

قيــود إضــافية:

x1 <u><</u> 450

يجب انتاج 100 طاولة بحد أدني

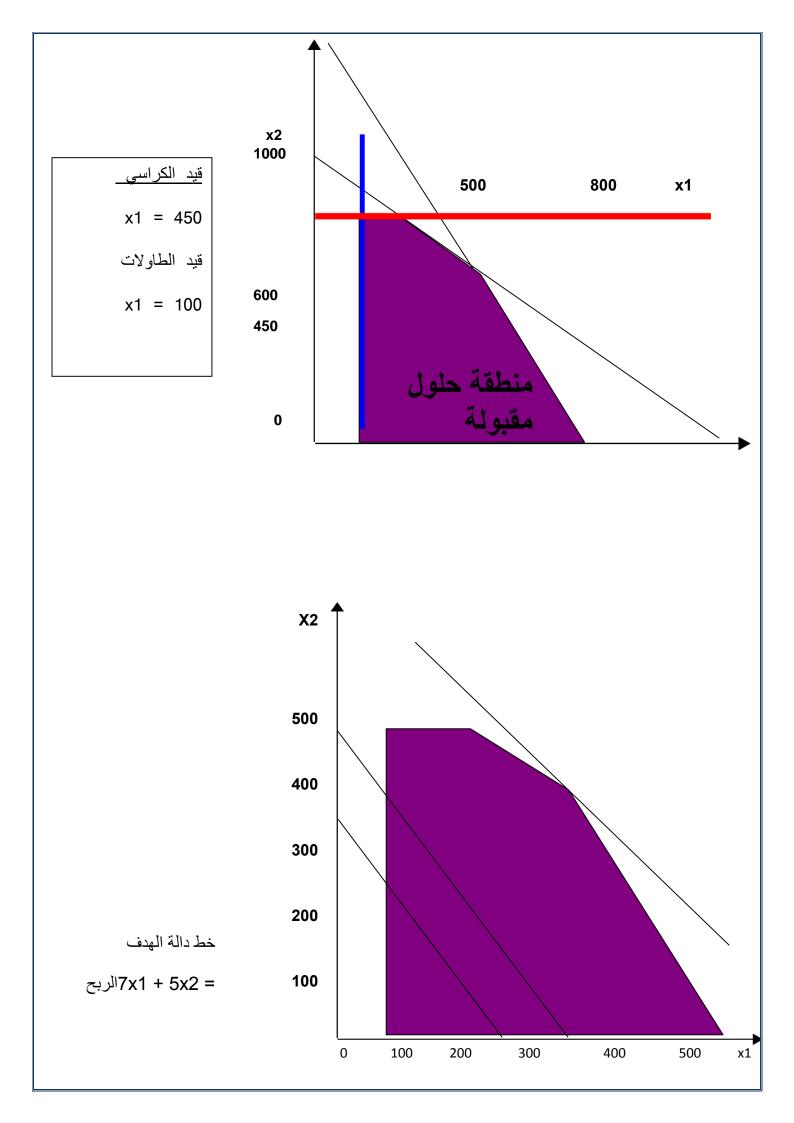
x2 ≥ 100

قيد عدم السالبية<u>:</u>

 $x1,x2 \ge 0$

الشكل العام للمسألة

Max z = 7x1 + 5x2


s.t.

$$3x1 + 4x2 \le 2400$$

$$2x1 + 1x2 \leq 1000$$

$$x1, x2 \ge 0$$

