المحاضره الرابعه عشر

(١)= اذا علمت أن P(A)= 0.8 و P(B) وأن كلا الحدثين مستقلان فإن =

 $P(A \cap B)$

قال مستقله يعني

 $P(A \cap B) = P(A) \times P(B)$

 $0,32 = 0.4 \times 0.8$

0,32 =

(٢)= اذا علمت أن P(A)= 0,8 و 0.4 و P(B) وأن كلا الحدثين مستقلان فإن =

P(A∪B)

قانون الاتحاد =

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

=0,8 + 0,4 - 0,32 =0,88

0,88=

(٣)= اذا علمت أن P(A)= 0.8 و P(B) وأن كلا الحدثين مستقلان فإن =

P(A | B)

0,8=

قانون الاحتمال الشرطي

 $P(A \mid B) = \frac{P(A \cap B)}{P(B)} =$

 $P(A | B) = \frac{0.32}{0.4} = 0.8 =$

ا يساوي B (0,8) ، A (-4,4) يساوي = B يساوي = B يساوي

من قانون الميل

1 =

B(x₂, y₂) \ni A(x₁, y₁) m = $\frac{y_2 - y_1}{x_2 - x_1}$

 $m = \frac{8-4}{0-(-4)} = 1$

ا تساوي
$$\lim_{x\to 0}$$
 (ex+5x+2) تساوي الداله

اعوض عن كل X بقيمتها 0

 $=e^{0}+5(0)+2$

يوجد بالحاسبه زر e اضغط على كلمه ALPHA ثم زر ×10 فوقه علامه e

 $e^{0}+5(0)+2=3$

أجب عن الفقرات التاليه بأستخدام المعلومات التاليه

$$f(x) = \begin{cases} 8x^2 + 10 & , x < 1 \\ 10x - 5 & , x > 1 \end{cases}$$

نهایه الدله $\lim_{x\to 2} F(X)$ تساوي

تساوي ۲ يعني نستخدم المعادله الثانيه لانه $x \rightarrow 2$

X اکبر من ۱

$$10(2) - 5 = 15$$

نهایه الدله $\lim_{x \to 1/2} F(X)$ تساوي

سفو کے X اصغر من X= $\lim_{x \to 1/2}$ سفور X اصغر من X= $\lim_{x \to 1/2}$

١

$$8(1/2)^2 + 10 = 12$$

3 =

12=

15=

إذا علمت ان داله الايراد الحدي لاحدي الشركات تاخذ الشكل التالى

 $R/=18x^2+12x-10$

وداله التكلفه الحديه تاخذ الشكل التالى:

C' = 12x + 20

حجم الايراد الكلي R عند إنتاج وبيع ٥ وحدات يساوي

No.=

 $R/=18x^2+12x-10$

هذا داله الايراد الحدي يريده داله ايراد كلي تصبح داله ايراد كلي اضيف ١ للاس واقسم على الاس الجديد

 $R^{/}=18x^{1+2}+12x^{1+1}-10$

 $R/=6x^3+6x^2-10x$

 $6(5)^3+6(5)^2-10(5)=850$

حجم التكاليف الكليه C عند إنتاج وبيع 6 وحدات يساوي

336=

نفس الفقره السابقه اعمل لها تفاضل لارجاعه لتكاليف الكليه فتصبح

 $=6x^2+20x$

أي من الدوال التاليه تعبر عن الربح الكلي P =

 $6x^3-30x=$

P=R-C $(6x^3+6x^2-10x) - (6x^2+20x)=$ $6x^3-30x$

اذا اعطيت البيانات التاليه

2,4,10,7,7

-المتوسط الحسابي للبيانات يساوي

6=

$$\frac{\sum \mathbf{x}}{\mathbf{N}} = \frac{2+4+10+7+7}{5}$$

الوسيط للبيانات:

7=

نرتب الاعداد تصاعدي

2,4,7,7,10

$$\frac{n+1}{2} = \frac{5+1}{2} =$$

العدد الذي يحمل ترتيب π هو $\frac{6}{2}$

المنوال للبيانات =

المنوال هو العدد اكثر تكرار

ملاحظه المطلوب

للجميع البيانات

الغير مبوبه

7=

المدي للبيانات =

8=

هو الفرق بين أكبر مفردة و أقل مفردة .

10 -2 = 8

التباين للبيانات:

7.6 =

X	2	4	10	7	7	30
X ²	4	16	100	49	49	218

$$\sigma^2 = \frac{\sum x^2}{n} - (\frac{\sum x}{n})^2 = \frac{218}{5} - (\frac{30}{5})^2 = 7.6$$

أجب عن الفقرتين باستخدام المعلومات من الجدول التالي تبعاً للجنس والمستوي التعليمي:

المجموع	دبلوم D	ثان <i>وي</i> B	النوع/ المستوي
			التعليمي
14	4	10	نکر X
12	2 /6	6	أنثي ٢
26	10	16	المجموع

(٤) أحتمال أن يكون الشخص ذكر أو حاصل على تبلوم يساوي

$$P(X \cup D) = P(X) + P(D) - P(X \cap D)$$

$$= \frac{14}{26} + \frac{10}{26} - \frac{4}{26} = \frac{10}{13} = 0.769$$

إذا علمت أن الشخص المختار حاصل على ثانوي فإن احتمال أن يكون أنثي

يساوي:

0,375=

0,769=

هنا يريد الاحتمال الشرطي ومن بعد كلمه ان يكون نبتدي به بالقانون الشرطي

أنثي ٢

$$P(Y|B) = \frac{P(Y \cap B)}{P(B)} = \frac{\frac{6}{26}}{\frac{16}{26}} = \frac{6}{16} = =0,375$$

اذا ابتدینا ب y

المقام يكون B

إذا كان التوزيع الاحتمالي حسب معدل حالات الفشل في إختبار المسابقه:

X=	0	1	2
P(x)=	0,3	0,2	?

P(x=2) =(٣٦) يساوي

X(0)+X(1) - 1 = 1-0,5=0,5

0,5=

(٣٧)=التوقع (المتوسط) للمتغير X يساوي:

1,2=

(٣٨)= التباين لهذا المتغير يساوي:

0,76 =

:P(x≥1) =(٣٩)

$$P(1) + P(2) = 0.2 + 0.5 = 0.7$$

0,7=

x	0	1	2	Σ	قيم المتغير
P(x)	0.3 = X	0,2	0,5	1	الاحتمال
E(x)=x.P(x)	0	0,2	1	1,2	التوقع
$E(X^{2})=x.E(x)$	0	0,2	2/	2.2	مربع التوقع
$v(x) = \sigma^2$	E(x2)-E(x)2=	2,2-(1.2)2	0,76		التباين

الجدول التالي يوضح لعدد (4) من الطلاب في مقرري الرياضيات (X) والاداره (Y):

X	2	4	3	1
Υ	1	3	3	1

(٤٠)= معامل الارتباط الخطى لبيرسون يساوى

0.89 =

(١٤) = نوع العلاقه لمعامل بيرسون

طردي قوي

y والمتغير التابع x والمتغير التابع x قيمه المعامل x يساوي

= صفر

(٤٣) = عند حساب معادله الانحدار بين المتغير المستقل x والمتغير التابع y قيمه المعامل b يساوي

0,8 =

(٤٤) = اذا كانت A=6 فإن قيمه y يمكن تقديرها لتصبح

4,8 =

(٥٤)= اذا تم استخدام معامل سبيرمان للرتب فأن قيمته تساوي

=0,9

X	2	4	3	1
У	1	3	3	1

معامل بيرسون

X	y	xy	\mathbf{X}^2	\mathbf{Y}^{2}
۲	١	۲	٤	1
٤	٣	17	١٦	9
٣	٣	٩	٩	٩
1	١	١	١	1
1.	٨	7 £	٣.	۲.

$$r_p = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y^2 - (\sum y)^2]}}$$

$$r_p = \frac{4 \times 24 - (10)(8)}{\sqrt{[4 \times 30 - (10)^2][4 \times 20 - (8)^2]}}$$
0,89=

نوع الارتباط = طردي قوي

ایجاد قیمه a,b

$$b = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2}$$

$$a = \frac{\sum y - b\sum x}{n}$$

$$b = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2}$$

$$b = \frac{4 \times 24 - (10)(8)}{4 \times 30 - (10)^2}$$

$$= 0.8$$

$$a = \frac{\sum y - b\sum x}{n}$$

$$a = \frac{8 - 0.8 \times 10}{4}$$

$$0 = \frac{8 - 0.8 \times 10}{4}$$

$$\hat{\mathbf{y}} = a + b\mathbf{x}$$

اعوض بهذا القانون

Y=0+0.8(6)=4.8

معامل سبيرمان للرتب

X	٤		٣	١
У	1	٣	٣	١

X	1	4	٣	٤
رتبx	1	*	٣	٤
У	١	١	٣	٣
رتب y	1	*	٣	4

تكرر العدد ١ مرتين

رتبهم ۱+۲=۳÷۲= ۱٫۵

تكرر العدد ٣ مرتين

٣,0=Y÷V =£+٣

X	У	رتبx	رتب	D	d ²
۲	1	۲	1,0		
£	٣	٤	٣,٥	_,,0	70
٣	٣	٣	٣,٥	0	
١	١	١	١,٥	_ • (0	70
					1

$$r_S = 1 - rac{6\sum d^2}{n(n^2 - 1)}$$
 $r_S = 1 - rac{6 imes 1}{4(4^2 - 1)}$

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	970ª	.941	.935	2.549

a. Predictors: (Constant), Weigt

ANOVA^b

معامل بیر سو ن

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1039.683	1	1039.683	159.992	.00 0ª
	Residual	64.984	10	6.498		
	Total	11 04.667	11			

a. Predictors: (Constant), Weigtb. Dependent Variable: Height

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	99.870	5.306		18.823	.000
	Weigt	.97,5	.077	.970	12.649	.000

a. Dependent (ariable: Height

(٢٤) من الجدول معامل بيرسون للارتباط بين المنغيرين لساوي:

.970 =

(٤٧) من الجدول معامل constant b بلياوي

99.89 =

Y=a*X+b

(٨٤) معادله الاتحدار يمكن قرأتها من الجدول

height=.975*weigt+99.870

الحل شخصي ان اصبت فمن الله وان اخطئت فمن نفسى والشيطان

أم حنان

واجبات البلاك بورد

السوال الاول

اذا كان الاستهلاك الحدي = ٢٦,٠ فان الادخار الحدي هو

0.44 .1

1 . 1

٥.66 .٣

← 0.34 .5

السؤال الثاثى

اذا كان لدينا الدالة

 $f(x)=x^2-5x+6$

x=2

الحل:

1.1

٥.٢

6 . 7

٤. 10

السؤال الثالث

اذا كانت دالة الايراد الكلي

 $f(x)=x^2 +10 x$

فان دالة الايراد الحدي تصبح

الحل:

2x+10 .1

 X^3+5x^2 .

15 .7

 $X^3/3+12x+c$. 4

1-0,66=0,34

القانون يقول

الميل الحدي للاستهلاك + الميل الحدي للادخار = ١

الحل نقوم بتعويض عن قيمه x

2²-5x2+6=0

نقوم بأشتقاق الداله

فتصبح = 2x+10

السؤال الرابع:

اذا كانت داله التكاليف الحديه

C(x)=2x+10

فأن داله التكاليف الكليه ستصبح ...

- X²+10x
 - 2 •
 - 4x •
 - 2x+c •

الحل= X2+10x

استرجاع المعادله قبل الاشتقاق ارجع

المحاضرة الثالثه

1-0,58=0,42

السوال الخامس:

اذا كان الادخار الحدي يساوي 0,58 فأن الاستثمار الحدي يساوي

- 1 •
- 0,58 •
- 0.42 •
- 0,52 •

السؤال السادس:

اذا كانت

$$\begin{cases} x^2 + 15, x < 2 \\ 5x - 12, x > 2 \end{cases}$$

 $\lim x \to 3$ تساوي:

- 3 .
- 2 •
- 24 •
- لاشي مما سبق

- x عندما x يعني استخدام المعادله الثانيه x اكبر من x
 - 5x3-12=3

السؤال السابع:

اذا كان P(A)=0.36 وكان P(B)=0.6 و P(A)=0.36 و p(A ∩ B)=0.36 وفإن A و B يعتبران ..

- مستقلان اضرب قیمه Aوقیمه B
 - غير مستقلان
 - متعارضان

اضرب قيمه Aوقيمه B اذا عطتني نفس ناتج التقاطع تعتبر مستقلان

0,6x0,6=0,36

مستقلان

السؤال الثامن:

اذا قمنا بالقاء قطعه نقود ٤ مرات متتالية فإن عدد عناضر فضاء العينه يساوي :

 $(2)^4 = 16$

- 17 .
- 44 .
 - ٤ .
 - ۱ .

السؤال التاسع:

الدرجات الوظيفيه تعتبر من البيانات

- الترتبيه →
 - النسبيه
 - الفتريه
 - الاسميه

السؤال العاشر:

اذا قمنا بالقاء قطعه نقود ٣ مرات متتالية فإن عدد عناضر فضاء العينه يساوي :

- 8 •
- **16**
 - 9 •
 - 4 •

السؤال الحادي عشر:

اذا كان P(A)= 0.36 وكان P(B)=0.8 و 0.36 P(A ∩ B)

- فإن Aو B يعتبران ..
 - مستقلان
 - غير مستقلان
 - متعارضان

- اضرب قيمه Aوقيمه B اذا عطتني نفس ناتج التقاطع تعتبر مستقلان
 - 0,8x0,6=0,48

غير مستقلان

السؤال الثاني عشر:

الدرجات الاختبار تعتبر من البيانات

- الترتبيه
- النسبيه
- الفتريه ─
 - الاسميه

السؤال الثالث عشر:

¥ حالة إكمال الأ

177	440	440	19	10	
171	771	7.9	11	19]
771	770	470	19	10]
775	1	۱۸۰	١٨	١.]
707	111	۱۷٦	١٦	11]
775	1	717	١٨	1 7	1
179	٤٠٠	۲٦.	١٣	۲.	1
775	179	7 T £	۱۸	١٣	1
7 7 7 9	777.	7707	١٦٥	١٤٦	المجموع

المطلوب حساب معامل الارتباط بيرسون بين كل من درجات الطلاب في مادة الاحصاء و المحاسبة:-

- 0.70464- (1)
- 0.85697 (-)
- (ع) 0.28736 (خ) (غ) 0.28736

السؤال الرابع عشر:

المقياس التالي ليس مقياساً للتشتت ...

- ١. الانحراف المعياري
 - ٢. المدي
- ٣. المتوسط الحسابي
 - ٤. معامل الاختلاف

السؤال الخامس عشر:

اذا كانت معادله الانحدار على النحو التالي

Grade=3*GPA+50

فإن قيمه معامل المرتغير المستقل تساوي ...

- 3 •
- **50** •
- -3 •
- 53 •

- طلب قيمه معامل المتغير المستقل
 - يرمز له به a بمعادله وموقعه 3
 - Y=a*X+b

السؤال السادس عشر:

نستطيع ان نحسب معامل سبيرمان للرتب في حال وجود بيانات كميه مثل دراسه العلاقة بين درجة مقرر الاحصاء بمقر المحاسبة:

- لا يمكن استخدام معامل سبيرمان الا في حاله البيانات الترتبيه
 - غير صحيح
 - صحیح حیث یتم تحویل البیانات الی رتب
- نستخدم فقط معامل بيرسون للارتباط ولا يمكن استخدام أي معامل

السؤال السابع عشر:

اذا كانت معادله الانحدار على النحو التالي

Grade=3*GPA+50

فإن قيم الثابت تساوي ..

- 3
- 50 •
- -3 •
- 53 •

- طلب قيمه الثابت
- يرمز له بـ b بمعادله وموقعه 50

Y=a*X+b

ورشه الاحصاء في الاداره ((الدفعه الماسية))

بالتوفيق

أم حنان

المحاضره الثانيه عشر

مثال:

إذا افترضنا أن مؤشر اسعار المستهلكين في المملكة لسنة ٢٠٠٦م معدل التضخم في سنة ٧٠٠٠م معدل التضخم في سنة ٧٠٠٠م

$$i_{2010} = \frac{CPI_{2010} - CPI_{2009}}{CPI_{2009}} (100)$$

$$2007 = \frac{123 - 120}{120} \times 100 = \frac{3}{120}(100) = 2.5$$

معدل التضخم في سنه ٢٠٠٧ =٥،٢%

مثال:

إذا كانت لدينا البيانات التالية والممثلة لسعر سلعة معينة من الفترة 2006م وحتى 2010م.

سعر السلعة بالريال	السنة
25	2006
30	2007
24	2008
32	2009
36	2010

المطلوب:

إيجاد منسوب السعر لهذه السلعة للفترة من سنة 2006م حتى سنة 2010م باعتبار سنة 2006م سنة أساس، مع تفسير النتائج التي يتم الحصول عليها .

$$P_r = \frac{P_1}{P0}(100)$$

(سنه الاساس) ۲۰۰۶ (سنه الاساس) هو P_0

منسوب السعر	سعر السلع بالربال	السنه
$\frac{25}{25}(100) = 100\%$	Y 0	۲٠٠٦
$\frac{30}{25}(100) = 120\%$	۳.	۲٧
$\frac{24}{25}(100) = 96\%$	Y £	۲٠٠٨
$\frac{32}{25}(100) = 128\%$	٣٢	Y • • 9
$\frac{36}{25}(100) = 144\%$	٣٦	۲۰۱۰

المحاضرة الثالثه عشر

مدخل الي SPSS

معامل بیرسون

Model Summary

			Adjusted	Std. Error of
Model	K	R Square	R Square	the Estimate
1	.970ª	.941	.935	2.549

a. Predictors: (Constant), Weigt

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1039.683	1	1039.683	159.992	.00 0ª
	Residual	64.984	10	6.498		
	Total	11 04.667	11			

a. Predictors: (Constant), Weigt -

لله. Dependent Variable: Height

المتغيرالمستقل

Coefficients^a

المتغير التابع ٧

X

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	99.870	5.306		18.823	.000
	Weigt	.97.5	.077	.970	12.649	.000

a. Dependent Variable: Height

•

• من المثال السابق نستطيع معرفة ما يلي:

b

- ١. قيمة معامل الارتباط (R)Pearson بين المتغيرين هي 970. وهي قيمة موجبة وقريبة من الارتباط التام 1.
 - ٢. المتغير المستقل هو Weight))

نكون المعادله

ه. معادلة الانحدار هي :Height = .975 * Weight + 99.87

• من الجدول المجاور، ما هو الطول التقديري للطالب الأول وكم يبلغ الخطأ الناتج عن استخدام المعادلة:

الوزن	الطول
Y0 /	11.
70	17.
00	10.

الناتج (٥٩٩، ١٧٣) لكن تم تقريبها الي ١٧٣

- من الناتج، نستطيع معرفة ما يلي:
- 1. Mean: الوسط الحسابي للعينة وهو التقدير النقطي للمجتمع.
 - ٢. حجم العينة N
 - ۳. Median (الوسيط)
 - التباین) Variance .٤
 - ه. Standard Deviation (الانحراف المعياري))
 - ۱. Minimum and Maximum ((أعلى قيمه .. أقل قيمه))
 - المدي) Range .٧

Case Processing Summary

	Cases						
	Va	lid	Missing		Total		
	N	Percent	Z	Percent	N	Percent	
Height	/ 12	100.0%	0	.0%	12	100.0%	

محجم العينه

Descriptives

			Statistic	Std. Error
	Height	Mean /	166.33	2.893
		95% Confidence Lower Bound	159.97	
		Interval for Mean Upper Bound	17 2.70	
		الو سيط 🔶 🔰 5% Trimm ed Mean	166.48	
• - 1		Median	168.00	
أعلي ح قيمه		التباين → التباين	100.424	
قيمه		Std. Deviation	10.021	
**	$\overline{}$	الانحراف Minimum	150	
→ المدي		الانحراف Minimum الامعياري Maximum المعياري	180	
→ المدي		Range	30	
م أقل قيمه		Interquartile Range	14	
الميال الميال		Skewness	360	.637
		Kurtosis	572	1.232

- من الشكل السابق نستنتج ما يلي:
- التقدير النقطي لـ (μ) لمتغير الطول هو 166.33 وهو الوسط الحسابي العينة Mean
 - ٢. حجم العينة هو 12
 - ٣. أعلى قيمة في المتغير Height هي 180 وأقل قيمة هي 150
 - ٤. ما هو المدى لبياتات الطول؟ 30

المدي= اعلى قيمه - اقل قيمه = ١٨٠ - ١٥٠ = ٣٠ موجوده بجدول ٣٠

بالتوفيق للجميع أم حنان