- (۱) مدخل الندم (Minimax (Regret) يعتمد على تقويم البدائل تمهيداً:
- (أ) لاختيار البديل الذي يتضمن أفضل العوائد الممكنة في ظل الحالات المتشائمة.
 - (ب) لاختيار البديل الذي يحتوي على اكبر قيمة نقدية متوقعة.
- (ج) لاختيار البديل الذي يتضمن أفضل العوائد الممكنة في ظل الحالات المتفائلة.
- (د) الاختيار البديل الذي ينطوي على اقل الفرص الضائعة. * المحاضرة ٩+ اختبار الترم الماضي
 - Decision Tree يعنى:
 - (أ) قرار المخاطر
 - (ب) شجرة القرارات **المحاضرة التاسعيّ
 - (ج) تحليل القرارات
 - (د) غابۃ القرارات
 - (۳) مصطلح Earliest Finish یعنی:
 - (أ) البداية المبكرة
 - (ب) النهاية المبكرة ** من المصطلحات الشبكات
 - (ج) النهاية المتأخر
 - (د) الزمن الفائض
 - (٤) "الحد الأعلى الذي ينفقه صانع القرار نظير حصوله على المعلومات" هو:
 - (أ) تحليل الحساسية.
 - (ب) قيمة المعلومات الجيدة ** المحاضرة التاسعة + اختبار الترم الماضي
 - (ج) القيمة النقدية المتوقعة
 - (د) االقرار في حالم عدم التأكد
- (٥) اذا وجدنا قيمة سالبة واحدة فقط في صف دالة الهدف في جدول السمبلكس فهذا يعنى ان :
 - (أ) الحل الأمثل قد تم التوصل اليه في الجدول السابق.
 - (ب) الحل الأمثل قد تم التوصل اليه في الجدول الحالي.
 - (ج) لازال هناك مجال لتحسين الحل وإيجاد جدول جديد. ** محاضرة خطوات
 - (د) هناك اكثر من حل أمثل.

- (٦) حساب الزمن المتوقع للنشاط في طريقة PERT:
- (أ) يتم حسابه لجميع الأنشطة الحرجة فقط. ** محاضرة شبكات بيرت
 - (ب) يتم حسابه لجميع الاحداث.
 - (ج) يتم حسابه لبعض الأنشطة الحرجة.
 - (د) يتم حسابه لجميع الأنشطة.
 - (٧) المفاهيم التالية جميعها تنطبق على النشاط الحرج ماعدا:
- (أ) النشاط الذي يمكن تأخير البدء فيه ** الاختبار الماضي + المصطلحات)الشبكات)
 - (ب) النشاط الذي لا يمكن تأخير البدء فيه
 - (ج) النشاط الذي له وقت فائض يساوي الصفر
 - (د) النشاط الذي إذا تم تأخير انتهائه، فأنه يتسبب في في تأخير المشروع
 - (٨) المسار الحرج هو:
 - (أ) الذي يحتوي على جميع الانشطة الحرجة ** محاضرة الشبكات (المصطلحات)
 - (ب) الذي ينتهي في وقته المحدد
 - (ج) نفس تعريف النشاط الحرج
 - (د) الذي يحتوي على جميع الانشطار
 - (٩) PERT يعنى في شبكات الأعمال:
 - Production E-business & Report Technique (i)
 - (ب) Project Evaluation & Review Technique ** اول صفحت بالشبكات
 - Critical Path Method (7)
 - Production Evaluation & Report Technique (2)
 - (١٠) الاختلاف عند اتخاذ القرارات في حالتي عدم التأكد و المخاطرة:
 - (أ) الاحتمالات المتعلقة بحالات الطبيعة معروفة في عدم التأكد، و غير متوفرة في المخاطرة
 - (ب) الاحتمالات المتعلقة بحالات الطبيعة غير معروفة في عدم التأكد، و متوفرة في المخاطرة ** المحاضرة التاسعيّ + تنبيه في المحاضرة المباشرة الثَّالثيّ
- (ج) التشاؤم و فرصم الندم تكون موجودة في عدم التأكد و غير متوفرة في المخاطرة
 - (د) الاختلاف في المسمى فقط، وليس هناك تأثير في العمليات الحسابية نفسها.
 - (١١) البرمجة الخطية تعتبر حالة خاصة من البرمجة الرياضية إذا:
- العلاقة خطية بين المتغيرات في دالة الهدف و القيود ** البرمجة الخطية + الواجم

- (ب) قيم المتغيرات معروفت
- (ج) دالت الهدف يوجد لها حل أمثل
- (د) العلاقة بين المتغيرات يمكن برمجتها
- (١٢) برنامج خطى ما يتكون من متغيرين و سبعة قيود، فإنه يمكن إيجاد الحل الأمثل عن طريق:
 - (أ) السمبلكس فقط
 - (ب) الرسم البياني فقط
- (ج) السمبلكس او الرسم البياني ** في محاضرة طرق حل البرمجــــ + المحاضرة المباشرة
 - (د) لا يمكن الحصول على حل أمثل لها بسبب كثرة القيود
 - Objective function (۱۳)
 - (أ) متغيرات القرار
 - (ب) قيود المسألة ** محاضرة البرمجة الخطية
 - (ج) دالترالهدف
 - (د) عدم السالبيت
 - (١٤) المتغير الداخل في جدول السمبلكس هو:
- أكبر معامل سالب في صف دالت الهدف ** محاضرة السمبلكس + الاترام الماض
 - (ب) أصغر خارج قسمة للمتغيرات الراكدة
 - (ج) نقطة تقاطع العمود المحوري مع الصف المحوري
 - (د) أقل معامل سالب في الجدول
 - (١٥) البرمجة الخطية هي:
 - Network Analysis (i)
 - Non-linear Programming (ب)
 - Goal Programming (7)
 - (د) Linear Programming ** المقدمة + البرمجة الخطيخ
 - (١٦) الحل الأمثل في الرسم البياني يوجد دائماً عند:
 - (أ) نقطة الأصل (٠،٠)

```
(ب) نقطم ركنيم ** محاضرة الرسم البياني
```

- (ج) نقطة تقاطع مع محور X1
- X2 نقطة تقاطع مع محور

(١٧) القيد التالي لا يمكن ان يكون قيداً في برنامج خطي:

- $10X1+0X2 \le 20$ (i)
- 20X1 20X2 >= 20 ($\mathbf{\psi}$)
 - X1>=X2 (7)
- (د) X1>2 ** محاضرة الصياغة + المحاضرة المباشرة الثانية
 - (١٨) أحد الخصائص المميزة لبحوث العمليات:
 - (أ) تعتمد على الحل الجزئي للمشكلة
- (ب) تقوم بصياغة المسألة وليس حل المشكلة/صناعة القرار
- (ج) تعتمد على فريق متكامل ينظر للنظام ككل. المقدمي
- (د) تعتمد على حل المشاكل يدوياً دون الحاجم الإستخدام الحاسوب
- (١٩) عند الربط بين (بحوث العمليات، البرمجة الخطية، البرمجة الرياضية) من الأشمل فإن:
 - (أ) البرمجة الرياضية→ البرمجة الخطية→ بحوث العمليات
- (ب) بحوث العمليات ← البرمجة الرياضية← البرمجة الخطية ** المناقشات + اختبار الترم الماضي
 - (ج) البرمجة الخطية ← البرمجة الرياضية ← بحوث العمليات
 - (د) البرمجة الرياضية ← بحوث العمليات ← البرمجة الخطية
 - (٢٠) بحوث العمليات يعنى:
 - (أ) Operations Research **المحاضرة الأولى، لكن بسبب التقارب الشديد
 - (ب) Operations & Research
 - الدرجة للكل)
 - Business Methods (3)
 - Research Operations (۵)
 - (٢١) اذا كان زمن البداية المتأخر= ١٢ و زمن النهاية المتأخر= ١٥، زمن البداية المبكر=١١، فإن الفائض ST يساوي:
 - 3 (i)
 - (ب)
 - (ج) 1 ** مصطلحات الشبكة
 - **(4)**

- اذا كان القيد الأول هو 20 > X1 + X2 و القيد الثاني هو 20 > X1 + X2 ، فإن اذا كان القيد الأول هو الحل:
 - (أ) غيرمحدود
 - (ب) غيرممكن
 - (ج) متعدد الحلول **الجالات الخاصة + ملاحظات ماقبل الاختبار
 - (د) مت**ڪ**رر
 - اذا كان أحد المعادلات هي 4=0-X، فإن قيمت X1 تساوي :
 - · (i)
 - (ب) ۶-
 - (ج) ٤ ** سؤال مباشر عند استخدام حل المعادلتين : x1-4=0 --- → x1=4
 - (د) ۱
- X1 اذا كان احد القيود في الشكل القياسي هو X1 + X2 + S1 = 150 فإن قيمت X1في الحل الابتدائي تساوي:
 - 1 (1)
 - (ب) ۱٤٧
 - (ج) **من محاضرةِ السمبلكس، تكوين جدول الحل الابتدائي
 - (د) ۱۵۰
 - اذا كان القيد الأول هو 20 = X1 + X2 و القيد الثاني هو 30 = X1 + X2 ، فإن الحل:
 - (أ) غيرمحدود
 - (ب) غير ممكن ** محاضرة الحل البياني ، عند التظليل
 - (ج) متعدد الحلول
 - (د) متكرر
 - Decision variables (۲۱)
 - (أ) اساليب القرار
 - (ب) متغيرات القرار ** صياغيّ برنامج خطي
 - (ج) القرارات المتغيرة
 - (د) قيود القرار
 - Critical Activity (۲۷) یعنی:

- (أ) مسارحرج
- (ب) نشاط وهمي
- (ج) حدث حرج
- (د) نشاط حرج ** الشبكات المصطلحات
- (٢٨) دالت الهدف في البرمجة الخطيبة تأخذ شكل:
- (أ) تعظيم أو تدنيم ** محاضرة البرمجمّ الخطيمّ ⊣لشكل العام
 - (ب) تعظیم و تدنیت
 - (ج) تعظيم في الرسم البياني، و تدنية في طريقة السمبلكس
 - (د) معادلت من الدرجة الثانية
 - (۲۹) النشاط في طريقة PERT يأخذ:
 - (أ) زمن واحد مؤكد
 - (ب) زمن واحد عشوائي
- (ج) ثلاثة أوقات (متفائل، اكثر احتمالاً، متشائم) ** محاضرة بيرت
 - (د) وقتین أثنین (متفائل، متشائم)

صياغت البرنامج الخطي

أحد المدارس تستعد لرحلة ٤٠٠ طالب وطالبة الشركة التي ستوفر النقل لديها عدد من الحافلات الكبيرة تتسع ل ٥٠ مقعد لكل منهما و عدد من الحافلات الصغيرة تتسع الواحدة منها لـ ٤٠ مقعدا، ولكن لا يوجد لدى الشركة الا ٩ سائقين لقيادة هذه الحافلات. تكلفة تأجير الحافلة الكبيرة هي ٨٠٠ ريال و ٢٠٠ ريال للحافلة الصغيرة. (إذا افترضنا ان X1= عدد الشاحات الكبيرة، X2= عدد الشاحنات الصغيرة)

هذا السؤال تم توضيحو التنبيه بشكل مباشرة على اهم معلومتين: وضع خط لنوع الدالم + تعريف المتغيرات لك

(٣٠) دالت الهدف في هذه المسألت تأخذ الشكل التالى:

- Max z=800x1+600x2 (i)
- (ب) Min z=800x1+600x2 ** تم تحديد نوع الدالم: + ارقام مباشرة
 - Max z=50x1+40x2 (3)
 - Min z=800x1+600x2 <= 1400 (2)

(٣١) القيد الخاص بعدد المقاعد يساوي:

- $X1+X2 \le 400$ (1)
- (ب) 400 = 50X1+40X2 ** ارقام مباشرة من المسألة متعلقة بالمقاعد
 - $50X1+40X2 \le 200$ (7)
 - 50X1+40X2 < 400 (2)

(٣٢) القيد الخاص بالسائقين هو:

- (أ) 4=>X1+X2 ** ارقام مباشرة من المسألة متعلقة بالسائقين + ملاحظات ماقبل
 - الاختبار
 - X1+X2>=9 (ب)
 - $X1 \le 9; X2 \le 9$ (7)
 - X1+X1 <= 18 (2)

(٣٣) دالت الهدف في هذه المسألت من نوع:

- (أ) تدنیټ ** مباشرة و مُعطاه ..تم وضع خط تحته
 - (ب) ثنائية الهدف
 - (ج) تعظیم
 - (د) غيرمحددة

الرسم البياني

إذا أعطيت البرنامج الخطى التالي و طُلب منك استخدام الرسم البياني في الحل:

Max
$$z = 3 x_1 + 2 x_2$$

s.t.

$$x_1 + 2x_2 \le 80$$
 (1)

$$x_1 + x_2 \le 55$$
 (2)
 $x_1, x_2 \ge 0$

هذا السؤال و الفقرات التابعيّ تماماً على نفس نمط االاختبارات الماضييّ + نموذج الاختبار محاضرة رقم ١٤

- (٣٤) القيد الثاني يتقاطع مع محور x1 في النقطة:
 - (1,1) (i)
 - (0,55) (ψ)
 - (ج) (55,0) ** المحاضرة المباشرة الثانية
 - (55,55) (2)
 - (٣٥) القيد الأول يتقاطع مع محور x2 في النقطة:
 - (أ) (0,40) ** المحاضرة المباشرة الثانيـــــ
 - (40,0) (\downarrow)
 - (1,2) (\mathbf{z})
 - (0,80) (2)
- (٣٦) القيد الأول يتقاطع مع القيد الثاني في النقطة:
 - (5,25) (1)
 - (30,5) (ψ)
 - (60,20) (τ)
- (د) (30,25) ** محاضرة الرسم البياني (تقاطع نقطتين)
- (٣٧) قيمة دالة الهدف عن نقطة التقاطع اعلاه تساوي:
- (أ) 140 ** تعويض مباشر في دالم الهدف + المحاضرة المباشرة الثانيم
 - (ب) 110
 - 75 (ج)
 - 220 (4)

الطريقة المبسطة (طريقة السمبلكس)

لدينا البرنامج الخطى التالي:

$$\text{Max } z = 2 x_1 + 3 x_2$$

s.t.

$$x_1 + 2x_2 \le 80$$
 (1)

$$x_1 + x_2 \le 55$$
 (2)
 $x_1, x_2 \ge 0$

هذا السؤال و الفقرات التابعَّ تماماً على نفس نمط االاختبارات الماضيَّة + نموذج الاختبار محاضرة رقَّم ١٤

(٣٨) دالت الهدف في الشكل القياسي لهذه المسألة ستكون على الشكل:

Max
$$z - 2x1 + 3x2 = 0$$
 (i)

Max
$$z + 2x1 - 3x2 = 0$$
 (7)

Min z -
$$2x1 - 3x2 = 0$$
 (2)

(٣٩) القيد الأول في الشكل القياسي لهذه المسألة سيكون على الشكل:

اً)
$$X1 + 2x2 + s1 = 80$$
 المحاضرة المباشرة الثانية $X1 + 2x2 + s1 = 80$

$$X1 + 2x2 + s1 < = 80$$
 (4)

$$X1 + 2x2 + s1 >= 80$$
 (7)

$$X1 + 2x2 - s1 = 80$$
 (2)

(٤٠) القيد الثاني في الشكل القياسي لهذه المسألة سيكون على الشكل:

$$X1 + x2 - s1 = 55$$
 (i)

$$X1 + x2 + s1 < = 55$$
 (\Box)

$$X1 + x2 - s1 \le 55$$
 (7)

** لمن يسأل عن استخدام S1، نستطيع استخدام اي رمز آخر مثلما تم التوضيح في المحاضرة المباشرة الثانية او المسجلة. و مع هذا كله، سوف اخاطب العمادة لمنح درجة هذا السؤال للكل

يتبع، اذا كان جدول الحل الابتدائي(الأولي) على النحو التالي

ه أساسيت	X1	X2	S 1	S2	الثابت
Z	-2	-3	*	*	0
S 1	1	2	*	*	80
S2	1	1	*	*	55

*لا تحتاج لها

هذا السؤال و الفقرات التابعّ تماماً على نفس نمط االاختبارات الماضيّّ + نموذج الاختبار محاضرة رقّم ١٤

(٤١) المتغير الداخل في الجدول هو:

- X1 (i)
- (ب) X2 **محاضرة السمبلكس
 - S1 (ج)
 - S2 (a)

(٤٢) المتغير الخارج من الجدول هو:

- X1 (i)
- X2 (ب)
- (ج) S1 **محاضرة السمبلكس
 - S2 (2)

(٤٣) قيمة العنصر المحوري هي:

- -2 (1)
- 0.5 ()
 - (ج) ۱
- (د) ۲ **محاضرة السمبلكس

(٤٤) (الصف المحوري الجديد) سوف يكون:

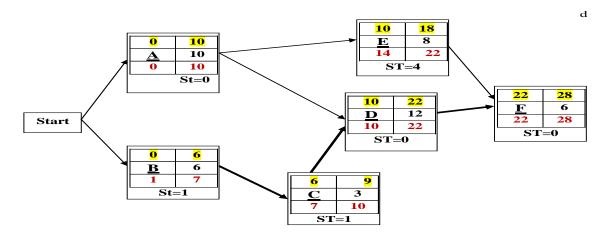
- $(2 \ 1 * * 55) (i)$
- $(0.5 \ 1 \ * \ * \ 80) \ ()$
 - (1 1 * * 80) (3)
- (د) (40 * * 1 0.5) ** محاضرة السميلكس

(٤٥) معادلة صف Z الجديدة في الجدول الجديد هي:

- (أ) (120 * * + 0.5 ^{**} محاضرة السميلكس
 - $(0 \quad 0 \quad * \quad * \quad 40)$
 - $(0.5 \quad 0 \quad * \quad * \quad 120)$ (3)
 - $(-2 \quad -3 \quad * \quad * \quad 120)$

إذا كان احد جداول الحل لبرنامج خطي مــا على النحو التالي

ه أساسيت	X1	X2	S1	S2	الثابت
Z	0.0001	0	*	*	75
X2	0	1	*	*	8
S2	1	0	*	*	10


*لا تحتاج لها

هذا السؤال و الفقرات التابعيّ تماماً على نفس نمط االاختبار الماضي+ نموذج الاختبار محاضرة رقم ۱٤

- (٤٦) قيمة دالة الهدف Z هي:
 - ٨٠ (أ)
- (ب) ٧٥ ** مباشر + محاضرة السمبلكس
 - (ج) ۹۳
 - (د) ۱۸
- (٤٧) النقطة التي تحقق عندها الحل الأمثـل هي:
 - $(\lambda \cdot \cdot)$ (i)
 - (ب) (۱۸)
- (ج) (٠،٨) ** قيمة x1 من الجدول مباشرة، قيمة x2 من الجدول
 - (·(1) (2)
 - (٤٨) قيمټ S1 هي:
 - A (1)
 - (ب) ۱۰
- (ج) ** محاضرة السمبلكس (لأنها غير موجودة بالجدول فقيمتها صفر)
 - (د) ۱
 - (٤٩) قيمت X1 هي:
- (أ) 🕴 ** محاضرة السمبلكس (لأنها غير موجودة بالجدول فقيمتها صفر)
 - (ب) ۱۰
 - 8 (5)
 - (د) لا يمكن حسابها
 - (٥٠) هل يمكن تحسين الحل لهذا الجدول النهائي:
 - (أ) نعم
 - (ب) طريقة السمبلكس لا توفر آلية للتعرف على إمكانية تحسين الحل
 - (ج) لا ** محاضرة السمبلكس (هل توجد قيم سالبح؟
 - (د) المعلومات المُعطاة غير كافيه

المسار الحرج

إذا اعطيت شبكة الأعمال التالية (المطلوب القيام بالحسابات اللازمة و الأزمنة الفائضة)

هذا السؤال و الفقرات التابعيّ تماماً على نفس نمط االاختبار الماضي + نموذج الاختبار محاضرة رقم ۱٤

هذه الشبكة نفس التي حلها بالمحاضرة المسجلة (الشبكات) مع تغيير في ارقام قليلة) في المحاضرة المباشرة الثالثة تم حل الشبكة مباشرة معكم + التأكيد عليكم بأن الشبكة ستأتى فارغة بالاختبار النهائي وعليكم تعبيئة الخلايا

- (٥١) الزمن الكلي للمشروع (المسار الحرج) هو:
 - * YA (ĺ)
 - (ب) ۲٤
 - (ج) ۲۲
 - (د) ۲۷
 - (٥٢) زمن البداية المتأخر للنشاط A يساوي:

- 1 (1)
- (ب) ۰
- 6 (z)
- 7 (**د**)
- (٥٣) زمن البداية المبكر للنشاط D يساوي
 - 15 (i)
 - (ب)
 - (ج) ۱۰
 - (د) 9
- (۵٤) زمن النهاية المتأخرة للنشاط C يساوي
 - 9 (1)
 - (ب)
 - 13 (₹)
 - (د) 10
- (٥٥) النشاط الذي يمكن تأجيل البدء به هو:
 - A (1)
 - <mark>C (ب</mark>)
 - D (5)
 - F (د)
 - (٥٦) الزمن الفائض للنشاط C يساوي
 - 1 (i)
 - 2 **(ب**)
 - (ج) ٠
 - (د) غيرمتوفر
 - (۵۷) بدأنا بعقدة بداية Start و ذلك بسبب:
 - (أ) وجود نشاط وهمي
- (ب) وجود نشاطين في البداية **قواعد الرسم في الشبكات
 - (ج) عدم وجود نهایت End
 - (د) يمكن الاستغناء عن عقدة البداية في هذه الشبكة

جدولة المشاريع وتقييمها PERT

الجدول التالي يمثل تسلسل الأنشطة لمشروع مـا (علامة * تدل على ان النشاط حرج):

		التقديسر			
التباين	المتوقع	تشاؤم (L)	أكثر احتمالاً (M)	تضاؤل (S)	رمز النشاط
		8	4.5	4	A*
		16	13	10	В
		14	5	2	C*

التباين =
$$(\frac{L-S}{6})^2$$
 $\frac{S+4*M+L}{6}$

قوانين قد تحتاج لها: الوقت المتوقع=

<u>هذا السؤال و الفقرات التابعيّ تماماً على نفس نمط االاختبار الماضي + نموذج الاختبار محاضرة </u> رقم ۱٤

هذه الشبكة نفس التي حلها بالمحاضرة المسجلة (الشبكات بيرت) مع تغيير في ارقام قليلة)

(٥٨) الوقت المتوقع للنشاط الحرج A يساوي

23.33 (1)

(پ)

(ج) ۵،٤

(د) <mark>5</mark>

(٥٩) الوقت المتوقع للنشاط C يساوي

13 (i)

5.5 (ب)

<mark>(ج) ۲</mark>

٣،٥ (١)

(٦٠) تباين النشاط الحرج C يساوي

2 (1)

(پ)

(ج) 24

(د) 4

(٦١) الزمن الذي يستغرقه هذا المشروع (زمن الإنجاز) يساوي:

14 (1)

<mark>(ب) ۱۱</mark>

(ج) ۲۲

19 (2)

(٦٢) تباين المشروع يساوي:

- 4.44 (i)
- (ب) 5.44
- 1.44 (天)
- 2.44 (2)

تحليل القرارات

الجدول التالي يمثل ثلاثت بدائل للاستثمار مع وجود ثلاث حالات:

ضعيف	متوسط	جيد	
٥	٥	٥	اسهم
٣-	٥	١٢	سندات
1	٦	11	عقارات

هذا السؤال و الفقرات التابعيّ تماماً على نفس نمط االاختبار الماضي + نموذج الاختبار محاضرة رقم ۱٤

تم التنبيه على ذلك في المحاضرة المباشرة الثالثة+ المحاضرة التاسعة + الملاحظات

- (٦٣) وفقاً للمدخل التفاؤلي MaxiMax ، فأن البديل الأفضل هـو:
 - (أ) اسهم وسندات
 - (ب) عقارات
 - (ج) اسهم
 - (د) سندات
 - (٦٤) وفقاً للمدخل المتشائم MaxiMin فإن البديل الأفضل هو:
 - (أ) عقارات
 - (ب) اسهم
 - (ج) لا يوجد
 - (د) سندات
 - (٦٥) وفقاً لمدخل الندم MiniMax فإن البديل الأفضل هو:
 - (i) **سند**ات
 - (ب) اسهم
 - (ج) عقارات
 - (د) متساوية بالأفضلية

- (٦٦) إذا افترضنا أن احتمال (الأقبال الجيد، المتوسط) يساوي ٠،٤٠ لكل حالم على حده ، فإن احتمال الاقبال الضعيف =
 - *it* (1)
- (ب) ١٠٢٠ (جاء بهذا الصيفة في اختبار الترم الماضي، وقاموا بحسابه = ١-٥،٤٠-١٠٠٠ = * ¿ Y *
 - (ج) لا يمكن قياسه
 - ٠،٨٠ (١)
 - (٦٧) بافتراض استمرار فرضية فقرة رقم ٦6 اعلاه، فإن القيمة النقدية المتوقعة للأسهم =
 - V.Y (1)
 - (ب) ٥ ** اضرب العائد في المصفوفة بالاحتمال المقابل له (نفس المثال في المسجلة التاسعت)
 - (ج) که ۲
 - (د) ۱۶
 - (٦٨) بافتراض استمرار فرضية فقرة رقم ٦٥ اعلاه ، فإن القيمة النقدية المتوقعة للسندات تساوى:
 - 0 (1)
 - (ب) ۵،۲
- (ج) ٦،٢ ** اضرب العائد في المصفوفة بالاحتمال المقابل له (نفس المثال في المسجلة التاسعت)
 - ٤،٤ (١)
 - (٦٩) بافتراض استمرار فرضية فقرة رقم ٦6 اعلاه ، فإن القيمة النقدية المتوقعة للعقارات تساوي:
 - 0 (1)
 - (ب) ۱۸
 - (ج) ۱۵
 - (د) ٧ ** اضرب العائد في المصفوفة بالاحتمال المقابل له (نفس المثال في المسجلة التاسعت)

(٧٠) أسم البرنامج الاكاديمي الذي تدرسه الآن هـو:

- (أ) الاعمال و الادارة
 - (ب) إدارة الأعم<u>ال</u>
 - (ج) إدارة عامة
 - (د) لا أعسرف

هذا ليس سؤال استظراف،، لكن ماهو جوابك لمن يسألك: اي برنامج تدرس بالجامعة او تخصصك الخ) او ماهو نظام التعلم الالكتروني الذي تستخدمون؟ هذه معلومات عامل يجب ان تعرفها 😊

مع أطيب التمنيات و الدعوات بالتوفيق والنجـــاح

ikahledo