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174 Part IV  Rings and Fields

Finally, be careful not to confuse our use of the words wunit and unity. Unity is
the multiplicative identity element, while a uniz is any element having a multiplicative
inverse. Thus the multiplicative identity element or unity is a unit, but not every unit is

unity. For example, —1 is 2 unit in Z, but —1 is not unity, thatis, —1 # 1.

2 HistoricAL NOTE

lthough fields were implict in the early work

on the solvability of equations by Abel and
Galois, it was Leopold Kronecker (1823-1891)
who in connection with his own work on this subject
first published in 1881 a definition of what he called
a “domain of rationality”: “The domain of rational-
ity (R', R”, R", - --) contains - - - every one of those
quantities which are rational functions of the quan-
tities R, R”, R", ... with integral coefficients.”
Kronecker, however, who insisted that any math-
ematical subject must be constructible in finitely
many steps, did not view the domain of rationality
as a complete entity, but merely as aregion in which
took place various operations on its elements.

Richard Dedekind (1831-1916), the inventor
of the Dedekind cut definition of a real number,
considered a field as a completed entity. In 1871,

he published the following definition in his supple-
ment to the second edition of Dirichlet’s text on
number theory: “By a field we mean any system of
infinitely many real or complex numbers, which in
itself is so closed and complete, that the addition,
subtraction, multiplication, and division of any two
numbers always produces a number of the same sys-
tem.” Both Kronecker and Dedekind had, however,
dealt with their varying ideas of this notion as early
as the 1850s in their university lectures.

A more abstract definition of a field, similar
to the one in the text, was given by Heinrich Weber
(1842-1913) in a paper of 1893. Weber’s definition,
unlike that of Dedekind, specifically included fields
with finitely many elements as well as other fields,
such as function fields, which were not subfields of
the field of complex numbers.

& EXERCISES 18

Computations

In Exercises 1 through 6, compute the product in the given ring.

1. (12)(16) in Zos
3. A)(—4in Zy5s
V5. (2,3)(3,5)in Zs x Zo

2. (16)(3) in Z3,
4. (20)(—8) in Z»s
6. (—3.5)2,—4)in Zs x Z

In Exercises 7 through 13, decide whether the indicated operations of addition and multiplication are defined
(closed) on the set, and give a ring structure. If a ring is not formed, tell why this is the case. If a ring is formed,
state whether the ring is commutative, whether it has unity, and whether it is a field.

7. nZ with the usual addition and multiplication
8. Z* with the usual addition and multiplication

9. Z x Z with addition and multiplication by components
¥710. 2Z x Z with addition and multiplication by components
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11.
3712, {a + b~/2]|a, b € Q} with the usual addition and multiplication
13.

23.

Concepts

33.
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{a + bv/2|a, b € Z} with the usual addition and multiplication

The set of all pure imaginary complex numbers ri for r € R with the usnal addition and multiplication

I Exercises 14 through 19, describe all units in the given ring
#1314
17
20.

Z 15. ZxZ 16. Zs
Q 18. ZxQx Z &19. Zy
Consider the matrix ring M>(Z2)-

a. Find the order of the ring, that is, the number of elements in it.
b. List all units in the ring.

. If possible, give an example of a homomorphism ¢ : R — R’ where R and R’ are rings with unity 1 7 0 and

1’ # 0/, and where ¢(1) # 0’ and ¢(1) # 1.

. (Linear algebra) Consider the map det of M, (R) into R where det(A) is the determinant of the matrix A for

A € M,(R).Is det a ring homomorphism? Why or why not?

. Describe all ring homomorphisms of Z into Z.
. Describe all ring homomorphisms of Z into Z x Z.

Describe all ring homomorphisms of Z x Z into Z.

. How many homomorphisms are there of Z x Z x Z into Z?
. Consider this solution of the equation X? = I3 in the ring M3(R).

X2 = I, implies X> — I; = 0, the zero matrix, so factoring, we have X -—EXX+5)=0
whence either X = I3 or X = — 1.
Is this reasoning correct? If not, point out the error, and if possible, give a counterexample to the conclusion.

Find all solutions of the equation +2 + x — 6 = Ointhering Z4 by factoring the quadratic polynomial. Compare
with Exercise 27.

In Exercises 29 and 30, correct the definition of the italicized term without reference to the text, if correction is
seaded, so that it is in a from acceptable for publication.

29,
30.
31.
32,

A field F is a ring with nonzero unity such that the set of nonzero elements of F is a group under multiplication.

A unit in a ring is an element of magnitude 1.

Give an example of a ring having two elements a and b such that ab = 0 but neither a nor b is zero.

Give an example of a ring with unity 1 5 0 that has a subring with nonzero unity 1’ # 1. [Hint: Consider a
direct product, or a subring of Zs.] :

Mark each of the following true or false.

a. Every field is also a ring.

b. Every ring has a multiplicative identity.

¢. Every ring with unity has at least two umnits.

d. Every ring with unity has at most two units.
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e. Itis possible for a subset of some field to be a ring but not a subfield, under the induced operatics:
f. The distributive laws for a ring are not very important.
g. Multiplication in a field is commutative.
h. The nonzero elements of a field form a group under the multiplication in the field.
i. Addition in every ring is commutative.
j- Every element in a ring has an additive inverse.
Theory
34. Show that the multiplication defined on the set F of functions in Example 18.4 satisfies axioms .72, and -#
for a ring.
35. Show that the evaluation map ¢, of Example 18.10 satisfies the multiplicative requirement for a homomorphm
36. Complete the argument outlined after Definitions 18.12 to show that isomorphism gives an equivalence re&w
on a collection of rings. :
37. Show that if U is the collection of all units in a ring (R, -+, -} with unity, then (U, -} is a group. [Warninz: ﬂ
sure to show that U is closed under multiplication.]
38. Show that a> — b* = (a + b)(@ — b) for all @ and b in a ring R if and only if R is commutative.
39. Let (R, +) be an abelian group. Show that (R, +, -) is a ring if we define b =0 foralla, b € R.
40. Show that the rings 2Z and 3Z are not isomorphic. Show that the fields R and C are not isomorphic.
v41. (Freshman exponentiation) Let p be a prime. Show that in the ring Z, we have (a + b)? = a? + b7 ¢
a, b € Z,. [Hint: Observe that the usual binomial expansion for (a -+ b)" is valid in a commutative ring
42. Show that the unity element in a subfield of a field must be the unity of the whole field, in contrast to Exercss:
for rings.
43. Show that the multiplicative inverse of a unit a ring with unity is unique.
44. Anelement a of a ring R is idempotent if a® = a.
a. Show that the set of all idempotent elements of a commutative ring is closed under multiplication.
b. Find all idempotents in the ring Zg x Z3.
45. (Linear algebra) Recall that for an m x n matrix A, the transpose AT of A is the matrix whose jth
is the jth row of A. Show that if A is an m x n matrix such that A”A is invertible, then the projecrio
P = A(ATA)! AT is an idempotent in the ring of n x n matrices.
46. An element a of a ring R is nilpotent if a” = 0 for some n € Z*. Show that if a and b are nilpotent =
of a commutative ring, then a + b is also nilpotent.
47. Show that a ring R has no nonzero nilpotent element if and only if 0 is the only solution of X =0is &
48. Show that a subset S of a ring R gives a subring of R if and only if the following hold:
0eS;
(a—b)e Storalla,b € §;
ab e Sforalla,b € §.
49. a. Show that an intersection of subrings of a ring R is again a subring of R.
b. Show that an intersection of subficlds of a field F is again a subfield of F.
50. Let R be aring, and let a be a fixed element of R. Let I, = {x € R |ax = 0}. Show that [, is a subsz
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nature of these solutions of polynomial equations. We need have no fear in approaching
this material. We shall be dealing with familiar topics of high school algebra. This work
should seem much more natural than group theory.

In conclusion, we remark that the machinery of factor rings and ring homomorphisms
is not really necessary in order for us to achieve our basic goal. For a direct demonstration,
see Artin [27, p. 29]. However, factor rings and ring homomorphisms are fundamental
ideas that we should grasp, and our basic goal will follow very easily once we have
mastered them.

# EXERCISES 22

Computations

In Exercises 1 through 4, find the sum and the product of the given polynomials in the given polynomial ring.
. f(x) =4x =5, g(x) = 2x* — 4x + 2 in Zg[x].

. f)=x+1,g(x)=x+1inZ,[x].

. f(x) =2x2 + 3x + 4, g(x) = 3x> + 2x + 3 in Zg[x].

. FO0) =2x3 4+ 4x% 4 3% + 2, g(x) = 3x* + 2x + 4 in Zs[x].

. How many polynomials are there of degree < 3 in Z[x]? (Include 0.)

. How many polynomials are there of degree < 2 in Zs[x]? (Include 0.)

ﬁ:
da' e

o h

In Exercises 7 and 8, F = E = C in Theorem 22.4. Compute for the indicated evaluation homomorphism.
7. ¢2(x* +3) 8. ¢i(2x° —x*+3x+2)

In Exercises 9 through 11, F = E = Z7 in Theorem 22.4. Compute for the indicated evaluation homomorphism.

9. ds[(x* + 2x)(x> — 3x2 + 3)] 10. ¢s[(x> + 2)(4x* +3)(x" +3x2 +1)]
11. ¢s(3x!% +5x% + 2x)  [Hint: Use Fermat’s theorem. |

In Exercises 12 through 15, find all zeros in the indicated finite field of the given polynomial with coefficients in
that field. [Hint: One way is simply to try all candidates!]

2 +1inZ, 3. X3+ 2x +2in 7,

X433 x4 2xinZs

15. f(x)g(x) where f(x) = x* +2x? + 5 and g(x) = 3x* +2x in Zy

16. Let @, : Zs[x] = Zs be an evaluation homomorphism as in Theorem 22 4. Use Fermat’s theorem to evaluate
$3 (P +3x 117 — 2x%3 4 1).

17. Use Fermat’s theorem to find all zeros in Zs of 2x2'9 + 3x +2x57 + 3xH,

Concepts
In Exercises 18 and 19, correct the definition of the italicized term without reference to the text, if correction i3
needed, so that it is in a form acceptable for publication.
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By a similar argument, say g»(x) = u2 pa(x), so
p3(x) -+ pr(x) = u1ti2gs(x) - - 45(%)-
Continuing in this manner, we eventually arrive at
1 = uqus -ty gr1(x) - - - gs(%).

This is only possible if s = r, so that this equation is actually 1 = wjus - - - u,. Thus the

irreducible factors p;(x) and g;(x) were the same except possibly for order and unit

factors. L 2

2321 Example Example 23.4 shows a factorization of 4 4 323 + 2x + 4 in Zs[x]is (x — D*(x + 1)
These irreducible factors in Zs[x] are only unique up to units in Zs[x], that is, nonzero
constants in Zs. For example, (x — 1)*(x + 1) = (x — 1)*(2x —2)(3x + 3). A

Z EXERCISES 23

Computations
In Exercises 1 through 4, find g(x) and r(x) as described by the division algorithm so that f(x) = g(x)g(x) +r(x)
with 7(x) = 0 or of degree less than the degree of g(x).
1. f(x) = x5+ 3x5 + 4x2 — 3x + 2 and g(x) = x> +2x — 3 in Zy[x].
2. f(x) = x%+3x5 +4x2 — 3x + 2 and g(x) = 3x* + 2x — 3 in Z[x].
3. f(x)=x%—2x*+3x —S5and g(x) = 2x + 1 in Zn[x].
4. f(x)=x*+5x> —3x*and g(x) = 5x* — x + 2 in Zp[x].
In Exercises 5 through 8, find all generators of the cyclic multiplicative group of units of the given finite field
(Review Corollary 6.16.)
5. Zs 6. Zy 7. Zyy . 8. Zn
9. The polynomial x* + 4 can be factored into linear factors in Zs[x]. Find this factorization.
10. The polynomial %3 4+ 2x? 1 2x + 1 can be factored into linear factors in Z,[x]. Find this factorization.
»711. The polynomial 2x® + 3x? — 7x — 5 can be factored into linear factors in Z; [x]. Find this factorization.
v 12. Is x® + 2x + 3 an irreducible polynomial of Zs[x]? Why? Express it as a product of irreducible polynomials
of Zs[x].
13. Is 2x3 + x2 + 2x + 2 an irreducible polynomial in Zs[x]? Why? Express it as a product of irreducible poly-
nomials in Zs[x].
214, Show that f(x) = x? + 8x — 2 is irreducible over Q. Is f(x) irreducible over R? Over C?
1-15. Repeat Exercise 14 with g(x) = x? + 6x + 12 in place of f(x).
16. Demonstrate that x> 4- 3x? — 8 is irreducible over Q.
17. Demonstrate that x* — 22x% + 1 is irreducible over Q.

In Exercises 18 through 21, determine whether the polynomial in Z[x] satisfies an Eisenstein criterion for irre-
ducibility over Q. |
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